zookeeper(zookeeper电影)
本篇文章给大家谈谈zookeeper,以及zookeeper电影对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
zookeeper怎么读
英音['zu:ki:p_(r)]美音['zu:ki:p_r]zookeeper基本解释n.动物园管理员zookeeper变化形式易混淆的单词:Zookeeper。
zoo-keeper美键凳[_zu_kip_r]英[_zu__ki_p_(r)]n.动物园管理员网络动物园看守;全民情兽;动物园管理者复数:zoo-keepers权威英汉圆宽双解英英。
英['zu_ki_p_]美['zukip_]n.动物园管理员_1/3_双语例句1.RarenewbornalbinoPygmyMarmosetmonkeysperchedonazookeeper'sfingers.
zookeeper的发音。一站式出国留学攻略橘亮亮
[img]zookeeper是什么意思
zookeeper的汉语意思如下:
n.
动物园管理员。
zookeeper的读音是:英 [ˈzuːkiːpə(r)] 美 [ˈzuːkiːpə租闷r]。
zookeeper的造句如下:
Zookeeper Marc Rosset said: 'We speak of one to five animals per week, which become food.'
动物园管理员马克·罗赛特称:“明手我们每周会收到1到5只沦为食物的动物。”
Using a bunch of bananas, the zookeeper patiently persuaded the monkey back into its cage.
用一串香蕉,动物园管理员耐心地引猴子回到笼子里。
One zookeeper feeding. It's time for dinner!
一个动物管理员在为它们,到吃晚激型嫌饭的时间了。
ZooKeeper is a distributed, open-source coordination service for distributed applications.
针对分布式应用的分布式协作服务。
According to a zookeeper, the animal is a husky-wolf hybrid.
一名饲养员表示,这只狗是哈士奇和狼的串种。
Imagine you are a zookeeper whose zoo is losing money.
想象你是一个正亏损的动物园里的一个动物饲养员。
zookeeper什么意思
zookeeper是动物管理员的意思。
ZooKeeper是一个分布式的,开放源码租前慎的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。
ZooKeeper的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户。
ZooKeeper包含一个简单的原语集,提供Java和C的接口。
ZooKeeper代码版本中,提供了分布式独享锁、选举、队列的接口,代码在$zookeeper_home\src\recipes。其中分布锁和队列有Java和C两个版本,选举只有Java版本。
它的原理:
ZooKeeper是以Fast Paxos算悔判法为基础的,Paxos 算法存在活锁的问题,即当有多个proposer交错提交时,有弊敬可能互相排斥导致没有一个proposer能提交成功,而Fast Paxos做了一些优化,通过选举产生一个leader (领导者),只有leader才能提交proposer,具体算法可见Fast Paxos。因此,要想弄懂ZooKeeper首先得对Fast Paxos有所了解。
ZooKeeper的基本运转流程:1、选举Leader。2、同步数据。3、选举Leader过程中算法有很多,但要达到的选举标准是一致的。4、Leader要具有最高的执行ID,类似root权限。5、集群中大多数的机器得到响应并接受选出的Leader。
Zookpeer是什么?在系统中如何起作用?
Zookeeper分布式服务框架是Apache Hadoop的一个子项目,它主要是用来解决分布式应用中经常遇到的一些数据管理问题。如:统一命名服务、状态同步服务、集群管理、分布式应用配置项的管理等。
我们先看看它都提供了哪些功能,然后再看看使用它的这些功能能做点什么。
简单的说,zookeeper=文件系统+通知机制。
Zookeeper维护一个类似文件系统的数据结构:
每个子目录项如 NameService 都被称作为 znode,和文件系统一样,我们能够自由的增加、删除znode,在一个znode下增加、删除子znode,唯一的不同在于znode是可以存储数据的。
客户端注册监听它关心的目录节点,当目录节点发生变化(数锋伍伍据改变、被删除、子目录节点增加删除)时,zookeeper会通知客户端。
这个似乎最简单,在zookeeper的文件系统里创建一个目录,即有唯一的path。在我们使用tborg无法确定上游程序的部署机器时即可与下游程序约定好path,通过path即能互相探索发现,不见不散了。
程序总是需要配置的,如果程序分散部署在多台机器上,要逐个改变配置就变得困难。
可以把这些配置全部放到zookeeper上去,保存在 Zookeeper 的某个目录节点中,然后所有相关应用程序对这个目录节点进行监听,一旦配置信息发生变化,每个应用程序就会收到 Zookeeper 的通知,然后从 Zookeeper 获取新的配置信息应用到系统中就好。
集群管理无在乎两点:是否有机器退出和加入、选举master。
对于第一点,所有机器约定在父目录GroupMembers下创建临时目录节点,然后监听父目录节点的子节点变化消息。一旦有机器挂掉,该机器与 zookeeper的连接断开,其所创建的临时目录节点被删除,所有其他机器都收到通知:某个兄弟目录被删除,于是,所有人都知道:它下船了。当然又会有新机器加入,也是类似:所有机器收到通知---新兄弟目录加入,highcount又有了,有人上船了。
对于第二点,我们假设机器创建临时顺序编号目录节点,每次选取编号最小的机器作为master就好。
有了zookeeper的一致性文件系统,锁的问题变得容易。锁服务可以分为两类,一个是保持独占,另一个是控制时序。
对于第一类,我们将zookeeper上的一个znode看作是一把锁,通过createznode的方式来实现。所有客户端都去创建 /distribute_lock 节点,最终成功创建的那个客户端也即拥有了这把锁。厕所有言:来也冲冲,去也冲冲,用完删除掉自己创建的distribute_lock 节点就释放出锁。
对于第二类, /distribute_lock 已经预先存在,所有客户端在它下面创建临时顺序编号目录节点,和选master一样,编号最小的获得锁,用完删除,依次方便。
两种类型的队列:
1、 同步队列,当一个队列的成员都聚齐时,这个队列才可用,否则一直等待所有成员到达。
2、队列按照 FIFO 方式进行入队和出队操作。
第一类,在约定目录下创建临时目录节点,监听节点数目是否是我们要求的橘耐数目。
第二类,和分布式锁服务中的控制时序场景基本原理一致,入列有编号,出列按编号。
Zookeeper中的角色主要有以下三类:
系统模型如图所示:
Zookeeper的核心是原子广播,这个机制保证了各个Server之间的同步。实现这个机制的协议叫做Zab协议。Zab协议有两种模式,它们分 别是恢复模式(选主)和广播模式(同步)。当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导银或者被选举出来,且大多数Server完成了和 leader的状态同步以后,恢复模式就结束了。状态同步保证了leader和Server具有相同的系统状态。
为了保证事务的顺序一致性,zookeeper采用了递增的事务id号(zxid)来标识事务。所有的提议(proposal)都在被提出的时候加上 了zxid。实现中zxid是一个64位的数字,它高32位是epoch用来标识leader关系是否改变,每次一个leader被选出来,它都会有一个 新的epoch,标识当前属于那个leader的统治时期。低32位用于递增计数。
每个Server在工作过程中有三种状态:
当leader崩溃或者leader失去大多数的follower,这时候zk进入恢复模式,恢复模式需要重新选举出一个新的leader,让所有的 Server都恢复到一个正确的状态。Zk的选举算法有两种:一种是基于basic paxos实现的,另外一种是基于fast paxos算法实现的。系统默认的选举算法为fast paxos。先介绍basic paxos流程:
通过流程分析我们可以得出:要使Leader获得多数Server的支持,则Server总数必须是奇数2n+1,且存活的Server的数目不得少于n+1.
选完leader以后,zk就进入状态同步过程。
Leader主要有三个功能:
PING消息是指Learner的心跳信息;REQUEST消息是Follower发送的提议信息,包括写请求及同步请求;ACK消息是 Follower的对提议的回复,超过半数的Follower通过,则commit该提议;REVALIDATE消息是用来延长SESSION有效时间。
Leader的工作流程简图如下所示,在实际实现中,流程要比下图复杂得多,启动了三个线程来实现功能。
Follower主要有四个功能:
Follower的消息循环处理如下几种来自Leader的消息:
Follower的工作流程简图如下所示,在实际实现中,Follower是通过5个线程来实现功能的。
P.S. 这篇文章是本人对网络上关于ZK的文章阅读之后整理所得,作为入门级的了解。个人觉得看了上面的内容就能基本了解Zookeeper的作用了,后面在结合实际项目使用加深自己的了解。
end
大数据Hadoop之ZooKeeper认识
Zookeeper字面上理解就是动物管理员,Hadoop生态圈中很多开源项目使用动物命名,那么需要一个管理员来管理这些“动物”。
在集群的管理中Zookeeper起到非常重要的角色,他负责分布式应用程序协调的工作。
Zookeeper管理集群会选举一个Leader节点(可参考FastLeader选举算法,即快速选举Leader节点),Leader节点主要负责整个Zookeeper集群的运行管理,Follower负责管理具体的数据存储与读取。
Zookeeper主要提供以下四点功能:统一命名服务、配置管理、集群管理、共享锁和队列管理,用于高效的管理集群的运行。
1. 统一命名服务
命名服务指通过指定的名字获取资源或者服务提供者的信息。分布式应用中,通常需要有一套完整的命名规则,既能够产生唯一的名称又便于识别和记忆。通常情况下使用空败树形的名称结构是一个理想的选择,树形的名称结构是一个有层次的目录结构,即对人友好又不会重复。
Zookeeper集群中统一由Leader节点(图中M节点)来管理所有Follower节点(图中的S1和S2节点)的命名空间。Zookeeper提供统一的命名服务,他不对外提供数据也不存储数据,他只提供一套统一的命名规则,运行在Zookeeper之上的服务需要遵循这一套命名规则。其中较为常见的就是一些分布式服务框架中的服务地址列表。通过调用ZK提供的创建节点的接口(API),能够很容易创建一个全局唯一的路径(path),这个path就可以作为一个名称。命名服务(NameService)已经是Zookeeper内置的功能,你只要调用Zookeeper的API就能实现。如调用create接口就可以很容易创建一个目录节点。
遵循Leader统一管理命名规则下,集群中数据读写的方式:
1.1.写数据,一个客户端进行写数据请求时,会指定Zookeeper集群节点,如果是Follower接收到写请求,会把请求转发给Leader,Leader通过内部的Zab协议进行原子广播,直到所有Zookeeper节点都成功写了数据,然后Zookeeper会给Client发回写完响应。
1.2.读数据,因为集群中Zookeeper按照统一的命名空间,所有Zookeeper节点呈现相同的命名空间视图(文件目录名称结构),所以读数据的时候请求任意一台Zookeeper节点都一样。
2. 配置管理
配置的管理在分布式应用环境中很常见,例如同一个应用需要在多台服务器上运行,但是它们的应用系统的某些配置相同的,如果要修改这些相同的配置项,就必须同时修改每台运行这个应用系统的PC Server,这样非常麻烦而且容易出错。像这样的配置信息完全可以交给Zookeeper来管理,处理起来非常便捷。
配置的管理包含发布和订阅两个过程,顾名思义就是将数据发布到ZK节点上,供订阅者动态获取数据,实现配置信息的集中管理和动态更新。
如图所示,将配置信息保存在Zookeeper(Leader节点)的某一个目录中,然后将所有需要修改的应用机器订阅该Zookeeper(Leader节点)节点,一旦Leader节点发布新配置信息,每台订阅的机器就会收到Zookeeper的通知,然后从Zookeeper获取新的配置信息应用到系统中,完成配置的集中统一管理。
3. 集群管理
Zookeeper在集群管理中主要是集群监控和Leader选举。
3.1.集群管理
这通常用于那种对集群中机器状态、 , 机器在线率有较高要求的场景,能够快速对集群中机器变化做出响应。这样的场景中,往往有一个监控系统,实时检测集群机器是否存活。过去的做法通常是:监控系统通过某种手段(比如ping)定时让扰检测每个机器,或者每个机器自己定时向监控系统汇报"我还活着"。
这种做法可行,但是存在两个比较明显的问题:
1).集群中机器有变动的时候,牵连修改的东西比较多。
2).有一定的延斗滑颤时。
利用ZooKeeper中两个特性,就可以实施另一种集群机器存活性监控系统:
1).客户端在示例节点A上注册一个监控者(Watcher),那么如果A的子节点变化了,会通知该客户端。
2).创建EPHEMERAL类型的节点,一旦客户端和服务器的会话结束或过期,那么该节点就会消失。
3.2.Leader选举:
Leader选举即从大量集群节点中选举一个Leader节点,是zookeeper中最为经典的使用场景,在分布式环境中选举的Leader节点好快会直接影响集群的效率。Leader节点主要负责相同的业务应用分布在不同的机器上共用的逻辑模型和数据的调配,优秀的调配方案可以大大减少重复运算,提高性能降低集群的负载。
利用ZooKeeper中两个特性,就可以实施另一种集群中Leader选举:
1).利用ZooKeeper的强一致性,能够保证在分布式高并发情况下节点创建的全局唯一性,即:同时有多个客户端请求创建Leader节点,最终一定只有一个客户端请求能够创建成功。利用这个特性,就能很轻易的在分布式环境中进行集群的Leader选举了。
2).另外,这种场景演化一下,就是动态Leader选举。这就要用到EPHEMERAL_SEQUENTIAL类型节点的特性了,这样每个节点会自动被编号。允许所有请求都能够创建成功,但是创建节点会为每个节点安排顺序,每次选取序列号最小的那个机器作为Leader。
小结
Zookeeper作为Hadoop主要的组件,在集群管理方面为我们提供了解决方案。通过对统一命名服务、配置管理和集群管理的阅读,我们能够清晰的理解Zookeeper的核心内容。针对共享锁和队列服务偏技术实现,有兴趣的可以进一步研究。
Zookeeper在大数据集群中解决集群管理的问题,磨刀不误砍柴工,了解完工具我们下一次分享一些具体的实效应用。
关于zookeeper和zookeeper电影的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。