opencvpython(opencv python安装)
本篇文章给大家谈谈opencvpython,以及opencv python安装对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、使用OpenCV和Python进行图像拼接
- 2、OpenCV-Python系列八:提取图像轮廓
- 3、python opencv安装教程 通过pip安装三方库
- 4、目标跟踪(5)使用 Opencv 和 Python 进行对象跟踪
使用OpenCV和Python进行图像拼接
么是图像拼接呢?简单来说,对于输入应该有一组图像,输出是合成图像。同时,必须保留图像之间的逻辑流。
首先让我们了解图像拼接的概念。基本上,如伏颂果你想捕捉一个大的场景,你的相机只能提供一个特定分辨率的图像(如:640×480),这当然不足以捕捉大的全景。所以,我们可以做的是捕捉整个场景的多个图像,然后把所有的碎片放在一起,形成一个大的图像。这些有序的照片被称为全景。获取多幅图像并将其转换成全景图的整个过程称为图像拼接。
首先,需要安装opencv 3.4.2.16。
接下来我们将导入我们将在Python代码中使用的库:
在我们的教程中,我们将拍摄这张精美的照片,我们会将其分成两张左右两张照片,然后我们会尝试拍摄相同或非常相似的照片。
因此,我将此图像切成两个图像,它们会有某种重叠区域:
在此,我们将列出我们应采取的步骤,以取得最终的结果:
因此,从第一步开始,我们将导入这两个图像并将它们转换为灰度,如果您使用的是大图像,我建议您使用cv2.resize,因为如果您使用较旧的计算机,它可能会非常慢并且需要很长时间。如果要调整图像大小,即调整50%,只需将fx = 1更改为fx = 0.5即可。
我们还需要找出两幅图像中匹配的特征。我们将使用opencv_contrib的SIFT描述符。SIFT (Scale constant Feature Transform)是一种非常强大的OpenCV算法。这些最匹配的特征作为拼接的基础。我们提取两幅图像的关键点和sift描述符如下:
kp1和kp2是关键点,des1和des2是图像的描述符。如果我们用特征来画这幅图,它桐源会是这样的:
左边的图像显示实际图像。右侧的图像使用SIFT检测到的特征进行注释:
一旦你有了两个图像的描述符和关键点,我们就会发现它们之间的对应关系。我们为什么要这么做?为了将任意两个图像连接成一个更大的图像,我们必须找到重叠的点。这些重叠的点会让我们根据第一幅图像了解第二幅图像的方向。根据这些公共点,我们就能知道第二幅图像是大是小还是旋转后重叠,或者缩小/放大后再fitted。所有此类信息的产生是通过建立对应关系来实现的。这个过程称为registration。
对于匹配图像,可以使用opencv提供的FLANN或BFMatcher方法。我会写两个例子证明我们会得到相同的结缺轮郑果。两个示例都匹配两张照片中更相似的特征。当我们设置参数k = 2时,这样我们就要求knnMatcher为每个描述符给出2个最佳匹配。“matches”是列表的列表,其中每个子列表由“k”个对象组成。以下是Python代码:
FLANN匹配代码:
BFMatcher匹配代码:
通常在图像中,图像的许多地方可能存在许多特征。所以我们过滤掉所有的匹配来得到最好的。因此我们使用上面得到的前2个匹配项进行比值检验。如果下面定义的比值大于指定的比值,则考虑匹配。
现在我们定义在图像上绘制线条的参数,并给出输出以查看当我们在图像上找到所有匹配时的样子:
这是输出的匹配图像:
这部分完整Python代码:
因此,一旦我们获得了图像之间的最佳匹配,我们的下一步就是计算单应矩阵。如前所述,单应矩阵将与最佳匹配点一起使用,以估计两个图像内的相对方向变换。
在OpenCV中估计单应性是一项简单的任务,只需一行代码:
在开始编码拼接算法之前,我们需要交换图像输入。所以img_现在会取右图像img会取左图像。
那么让我们进入拼接编码:
因此,首先,我们将最小匹配条件count设置为10(由MIN_MATCH_COUNT定义),并且只有在匹配良好的匹配超出所需匹配时才进行拼接。否则,只需显示一条消息,说明匹配不够。
因此,在if语句中,我们将关键点(从匹配列表)转换为findHomography()函数的参数。
只需在这段代码中讨论cv2.imshow(“original_image_overlapping.jpg”,img2),我们就会显示我们收到的图像重叠区域:
因此,一旦我们建立了单应性,我们需要扭曲视角,我们将以下单应矩阵应用于图像:
所以我们使用如下:
在上面两行Python代码中,我们从两个给定的图像中获取重叠区域。然后在“dst”中我们只接收到没有重叠的图像的右侧,因此在第二行代码中我们将左侧图像放置到最终图像。所以在这一点上我们完全拼接了图像:
剩下的就是去除图像的黑色,所以我们将编写以下代码来从所有图像边框中删除黑边:
这是我们调用修剪边界的最终定义函数,同时我们在屏幕上显示该图像。如果您愿意,也可以将其写入磁盘:
使用上面的Python代码,我们将首先收到原始图片:
这是完整的最终代码:
在本教程中,我们学习了如何使用OpenCV执行图像拼接和全景构造,并编写了最终的图像拼接代码。
我们的图像拼接算法需要四个主要步骤:检测关键点和提取局部不变描述符; 获得图像之间的匹配描述符; 应用RANSAC估计单应矩阵; 使用单应矩阵应用warping transformation。
当仅为两个图像构建全景图时,该算法在实践中工作良好。
[img]OpenCV-Python系列八:提取图像轮廓
当你完成图像分割之后,图像轮廓检测往往可以进一步筛选你要的目标,OpenCV中可以使用cv2.findContours来得到轮廓。
补充 :
再不少场景中,找轮廓的最小外接矩形是基本需求,opencv中minAreaRect得到的是一个带有旋转角度信息的rect,可以使用cv2.boxPoints(rect)来将其转为矩形的四个顶点坐标锋塌衫(浮点类型).你也可以使用cv2.polylines来绘银腔制这样的轮廓信息
注意findContours参数的变化,在opencv4中,返回值只有contours和hierarchy ,这一点与opencv3中不同。对与轮廓的层级结构衫搜,比较难用,虽然可以通过轮廓的层级结构来进行索引你需要的轮廓,不过对于大部分机器视觉应用场景,二值化的结果有时候很难预料,单单通过这种层级关系索引,非常容易出错。所以,只找最外部结构的 cv2.RETR_EXTERNAL 是不是真香呢?
处理cv2.approxPolyDP()外,你也可以使用cv2.convexHull来求轮廓的近似凸包,其中凸形状内部--任意两点连线都在该形状内部。
clockwise :默认为False,即轮廓为逆时针方向进行排列;
returnPoints :设置为False会返回与凸包上对应的轮廓的点索引值,设置为True,则会返回凸包上的点坐标集,默认为True
对于opencv-python的提取图像轮廓部分有问题欢迎留言, Have Fun With OpenCV-Python, 下期见。
python opencv安装教程 通过pip安装三方库
opencv是一个python的三方库,可以通过pip安装,不同系统下的操作步骤裤渗略有差异。闷册
1、对于Window系统。
1.首先win+R 输入cmd打开控制台
2.输入pip install opencv-python回车进行安装
3.如果找不到pip可以将python安装目录下\Scripts目录加到环境变量,或者换用python-m pip install opencv-python 来进行安装
2、对于Linux系统。
1.直接在shell下运行pip install opencv-python即可
3、安装结束之后,运行python, 输蚂纯宏入import cv2来验证是否正确安装。
目标跟踪(5)使用 Opencv 和 Python 进行对象跟踪
在本教程中,我们将学习如何基于 Opencv 和 Python 实现对象跟踪。
首先必须明确目标检测和目标跟踪有什么区别:
我们将首先讨论对象检测,然后讨论如何将对象跟踪应用于检测。
可能有不同的应用,例如,计算某个区域有多少人,检查传送带上有多少物体通过,或者计算高速公路上的车辆。
当然,看过本教程后,您会很容易地想到数以千计的想孙腔没法应用于现实生活或可能应用于工业。
在本教程中,我们将使用 3 个文件:
首先我们需要调用highway.mp4文件并创建一个mask:
正如您在示例代码中看到的,我们还使用了 createBackgroundSubtractorMOG2 函数,该函数返回背景比率(background ratio),然后创建mask。
mask可视化结果:
但是,如您所见,图像中有很多噪点。因此,让我们通过删除所有较小的元素来改进提取,并将我们的注意力集中在大于某个面积的对象上。
使用 OpenCV 的cv2.drawContours函数绘制轮廓,我们得到了这个结果。
就本教程而言,分析整个窗口并不重要。我们只对计算在某个点通过的所有车辆感兴趣,因此,我们必须定义一个感兴趣的区域 ROI 并仅在该区域应用mask。
结果可视化如下:
函数 cv2.createBackgroundSubtractorMOG2 是在开始时添加的,没有定义参数,现在让我们看看如何进一步改进我们的结果。history是第一个参数,在这种情况下,它设置为 100,因为相机是固定的。varThreshold改为 40,因为该值越低,误报的可能性就越大。在这种情况下,我们只对较大的对象感兴趣。
在继续处理矩形之前,我们对图像进行了进一步的清理。为此,阈值函数就派上用场了。从我们的mask开始,我们告诉它我们只想显示白色或黑色值,因此通过编写254, 255,只会考虑 254 和 255 之间的值。
然后我们将找到的对象的坐标插入到 if 条件中并绘制矩形
这是最终结果:
我们现在只需导入和集成跟踪功能。
一旦创建了对象,我们必须获取边界框的每个位置并将它们插入到单个数组中。
通过在屏幕上显示结果,您可以看到所有通过 ROI 的通道是如何被识别的,则纳以及它们的位置是如何插入到特定的数组中的。显然,识别的摩托车越多,我们的数组就越大。
现在让我们将带圆行有位置的数组传递给tracker.update()。我们将再次获得一个包含位置的数组,但此外,将为每个对象分配一个唯一的 ID。
从代码中可以看出,我们可以使用 for 循环分析所有内容。此时我们只需要绘制矩形并显示车辆 ID。
在图像中,您可以看到结果
main.py
从视频中也可以看到,我们已经获得了我们在本教程开始时设置的结果。
但是,您必须将其视为练习或起点,因为关于这个主题有很多话要说,而本教程的目的只是让您了解对象跟踪的原理。
如果你想将 Object Tracking 集成到你的项目中,你应该使用更可靠和先进的对象检测方法,以及跟踪方法。
完整代码地址:私信“333”直接获取或者「链接」
关于opencvpython和opencv python安装的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。