挖掘数据价值(挖掘数据价值的用处)
本篇文章给大家谈谈挖掘数据价值,以及挖掘数据价值的用处对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
如何通过数据分析挖掘数据价值?
【导读】随着科技的高速开展,数据在人们生活和决议计划中所占的比重越来越大,大数据的热浪已然覆盖了整个时代。大数据一直在活跃赋能很多工业,包括金融、医疗、农业、教育等。那么,如何经过数据剖埋塌析发掘数据价值呢?今日就跟随小编一起来了解下吧!
无论是在政务范畴仍是商业范畴,依赖于大数据技能的数据剖析总是为行业提供决议计划支撑。因为大数据是从量变到质变的过程,加之数据被广泛发掘,决议计划根据的信息完整性越来越高,根据信息的理性决议计划要高于以往拍脑袋的盲目决议计划。
微观层面中,大数据使得经济决议计划部分可以愈加敏锐的掌握经济走向,并制定实施科学的经济决议计划;在微观层面中,大数据可以进步企业经营决议计划水平缓效率,推进立异,给企业以及所在的行业范畴带来价值。
大数据不光要有数据,还要精分跟相应的行业相结合,产生帮助企业实际运弯耐圆营的产品,这样数据才有价值。若想依托大数据把脉企业经营现状,猜测行业开展趋势,就需要不断对数据源进行有用的挑选、清洗,做到精准剖析,不然得到的成果有可能是南辕北辙,于商业无益。
需要经过数据剖析,对数据来历进行全方位挑选、清洗,同时打通各行业、各范畴的数据孤岛,实现数据的整合、有用剖析,最大化数据剖析成果的精准度。经过对数据收集、传输、挑选、清洗、交融、剖析、计算及可视化使用等,高效整合线上线下数据,进行深层次、广范围的数据关联剖析,解决企业全方位数据剖析问题,降低数据剖析本钱,助力企业深度发掘数据价值。
数据剖析的中心作业是人对数据目标的剖析、考虑和解读,人脑所能承载的数据量是极端有限的。所以,无论是“传统数据剖析”,仍是“大数据剖析”,均需要将原始数据依照剖析思路进行计算处理,亩旁得到概要性的计算成果供人剖析。两者在这个过程中是相似的,区别仅仅原始数据量巨细所导致处理方式的不同。
以上就是小编今天给大家整理分享关于“如何通过数据分析挖掘数据价值?”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。
[img]挖掘数据价值换个说法
挖掘数据价值换个说法,数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐枯御含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。据相关公开信息显示,数据挖掘(DataMining)是指通过大量数据集进行分类的自动化没春岩过程,以通过数据分析来识别趋势和模式,建立关系来解决业务问题。换句话说,数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。通常我们把信息转化为价值,要经历信息、数据、知识、价值四个森腊层面,数据挖掘就是中间的重要环节,是从数据中发现知识的过程。
大数据价值挖掘的三要素
大数据价值挖掘的三要素
如何充分利用大数据,挖掘大数据的商业价值,从而提升企业的竞争力,已经成为企业关注的一个焦点。
全面解决方案才能奏效
当前,越来越多企业将大数据的分析结果作为其判断未来发展的依据。同时,传统的商业预测逻辑正日益被新的大数据预测所取代。但是,我们要谨慎管理大家对大数据的期望值,因为海量数据只有在得到有效治理的前提下才能进一步发展其业务价值。
最广为人知的大数据定义是Gartner给出的大数据的3V特性:巨大的数据量(Volume)、数据的快速处理(Velocity)、多变的数据结构和类型(Variety)。根据这一定义,大家首先想到的是IT系统中一直难以处理却又不容忽视的非结构化数据。也就是说,大数据不仅要处理好交易型数据的分析,还把社交媒体、电子商务、决策支持等信息都融入进来。现在,分布式处理技术Hadoop和NoSQL已经能对非结构化数据进行存储、处理、分析和挖掘,但未能为满足客户的大数据需求提供一个全面的解决方案。
事实上,普遍意义上的大数据范围更加广泛,任何涉及海量数据及多数据源的复杂计算,均属大数据范畴,而不仅局限于非结构化数据。因此,诸如电信运营商所拥有的巨量用户的各类详细数据、手机开关机信息、手机在网注册信息、手机通话计费信息、手机上网详细日志信息、用户漫游信息、用户订阅服务信息和用户基础服务信息等,均可划归为大数据。
与几年前兴起的云计算相比,大数据实现其业务价值所要走的路或许更为亩腊卖长远。但是企业用户已经迫不及待,越来越多企业高层倾向于将大数据分析结果作为其商业决策的重要依据。在这种背景下,我们必须找到一种全面的大数据解决方案,不仅要解决非结构化数据的处理问题,还要将功能扩展到海量数据的存储、大数据的分布式采集和交换、海量数据的实时快速访问、统计分析与挖掘和商务智能分析等。
典型的大数据解决方案应该是具有多种能力的平台化解决方案,这些能力包括结构化数据的存储、计算、分析和挖掘,多结构化数据的存储、加工和处理,以及大数据的商务智能分析。这种解决方案在技术应具有以下四个特性:软硬集成化的大数据处理、全结构化数据处理的能力、大规模内存计算的能力、超高网络速度的访问。
软硬件集成是必然选择
我们认为,大数据解决方案的关键在于如何处理好大规模数据计算。过去,传统的前端数据库服务器、后端大存储的架构难以有效存储大规模数据并保持高性能数据处理。这时候,我们让软件和硬件更有效地集成起来进行更紧密的协作。也就是说,我们需要软硬一体化的专门设备来应对大数据的挑战。
一直以来,甲骨文公司在传统的关系型数据库领域占有绝对优势,但并未因此固步自封。面对大数据热潮,甲骨文公司根据用户的需求不断推陈出新,将在数据领域的优势从传统的关系型数据库扩展到全面的大数据解决方案,成为业界首个通过全面的、软硬件集成的产品来满足企业关键大数据需求的公司。
甲骨文公司以软硬件集成的方式提供大数据的捕获、组织、分析和决策的所有能力,为企业提供完整的集成化大数据解决方案,其中的核心产品包括Oracle大数据机、Exalytics商务智能云服务迅逗器和OracleExadata数据库云服务器。
Oracle大数据机用于多结构化大数据处理,旨在简化大数据项目的实施与管理,其数据加工结果可以通过超高带宽的InfiniBand网络连接到OracleExadata数据库云服务器中。OracleExadata可提供高效数据存储和计算能力,配备超大容量的内存和快速闪存,配合特有的软硬件优化技术,可对大数据进行高效的加工、分析和挖掘。同时,甲骨文公司在OracleExadata以及数据库软件层面提供了非常高效和便捷的高局卜级数据分析软件,使数据能够更快、更高效地得到分析、挖掘和处理。
通过Oracle大数据机快速获得、组织大数据之后,企业还要根据对大数据全面、实时的分析结果做出科学的业务决策。OracleExalytics商务智能云服务器能以前所未有的速度运行数据分析应用,为客户提供实时、快速的可视分析。同样,它通过InfiniBand网络连接到OracleExadata上进行数据加载和读取,让大数据直接在内存中快速计算,满足大数据时代对数据分析展现的快速响应需求。OracleExalytics实现了新型分析应用,可用于异构IT环境,能存取和分析来自任何Oracle或非Oracle的关系型数据、OLAP或非结构化数据源的数据。
Oracle大数据机、OracleExalytics商务智能云服务器和OracleExadata数据库云服务器一起,组成了甲骨文最广泛、高度集成化系统产品组合,为企业提供了一个端到端的大数据解决方案,满足企业对大数据治理的所有需求。
坚持开放的战略
从当前的情况来看,在大数据应用领域,仅靠一家厂商的产品难以解决所有问题。因此对于大数据解决方案供应商来说,采用开放的策略是必然选择。甲骨文公司坚持全面、开放、集成的产品策略。这一策略在大数据领域同样适用。
这首先体现在大数据战略在技术上支持Hadoop和开源软件。除了集成化产品,甲骨文公司还拥有一系列领先技术,以帮助用户全面应对大数据应用的挑战,其中包括OracleNoSQL数据库,以及针对Hadoop架构的系列产品。
OracleNoSQL数据库专门为管理海量数据而设计,可以帮助企业存取非结构化数据,并可横向扩展至数百个高可用性节点。同时,该产品能够提供可预测的吞吐量和延迟时间,而且更加容易安装、配置和管理,支持广泛的工作负载。
而专门针对Hadoop架构的产品,能够帮助企业应对在组织和提取大数据方面所面临的挑战,包括Oracle数据集成Hadoop应用适配器、OracleHadoop装载器以及OracleSQL Connector等。
此外,OracleR Enterprise实现了R开源统计环境与Oracle数据库11g的集成,为进行更进一步的数据分析提供了一个企业就绪的、深度集成的环境。
值得一提的是,除对产品和解决方案不断投入,甲骨文公司还致力于和合作伙伴合作开发大数据解决方案。目前,几乎所有的甲骨文合作伙伴都在关注和测试大数据解决方案。甲骨文公司正积极寻找更多本地合作伙伴,为客户提供更加定制化的产品和解决方案。
总而言之,大数据已经和云计算、社交化、移动化一起,成为现阶段驱动企业IT模式变革的重要因素。Oracle大数据解决方案可以横跨IT架构的所有层面,与其他产品进行创新集成,并凭借卓越的可靠性、可扩展性和可管理性,为企业的IT发展,甚至业务发展提供理想的IT基础支持。
什么及其他算法可深入数据内部挖掘价值?
数据挖掘是指人们从事先不知道的大量不完整、杂乱、模糊和随机数据中提取潜在隐藏的有用信息和知识的过程。下面说下我们在挖掘大数据的时候,都会用到的几种方法:
方法1.(可视化分析)无论是日志数据分析专家还是普通用户,数据可视化都是数据分析工具的最基本要求。可视化可以直观地显示数据,让数据自己说话,让听众看到结果。
方法2.(数据挖掘算法)如果说可视化用于人们观看,那么数据挖掘就是给机器看的。集群、分割、孤立点分析和其他算法使我们能够深入挖掘数据并挖掘价值。这些算法不仅槐悄迅要处理大量数据,还必须尽量缩减处理大数据的速度。
方法3.(预测分析能力)数据挖掘使分析师可以更好地理解数据,而预测分析则使分析师可以根据可视化分析和数据挖掘的结果做出一些预测性判断。
方法4.(语义引擎)由于非结构化数据的多样性给数据分析带来了新挑战,因此需要一系列工具来解析,提取和分析数据。需要将语义引擎设计成从“文档”中智能地提取信息。
方法5.(数据质量和主数据管理)数据质量和数据管理是一些管理方面的最佳实践。通过标准化流程和工具处理数据可确保获得预定义的高质量分析结果。
想要了解更多有关大数据挖掘的信息,可以了解一下CDA数据运穗分析师的课程。课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的铅此纵向能力。要求学生在使用算法解决微观根因分析、预测分析的问题上,根据业务场景来综合判断,洞察数据规律,使用正确的数据清洗与特征工程方法,综合使用统计分析方法、统计模型、运筹学、机器学习、文本挖掘算法,而非单一的机器学习算法。真正给企业提出可行性的价值方案和价值业务结果
关于挖掘数据价值和挖掘数据价值的用处的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。