卷积神经网络模型(常见的卷积神经网络模型)
本篇文章给大家谈谈卷积神经网络模型,以及常见的卷积神经网络模型对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
状态识别用什么神经网络模型
状态识别用卷积神经网络模型。卷积神经网络与郑族普通神经网络的区别在于,卷积神经网络包含了一个由卷积层和子采样层(池化层)构成的特征抽取器。在卷积神经网络的卷积层中,一个神经元只与部凯告分邻层神经元连接。在CNN的一个卷积层中,通常包含若干个特征图(featureMap),每个特征图由一些矩形排列的的神经元组成,同一特征图的神经元共享权值,这里共享的权值就喊孙弊是卷积核。
卷积神经网络CNN(Convolutional Neural Network)
上图计算过程为,首先我们可以将右边进行卷积的可以称为过滤器也可以叫做核,覆盖到左边第一个区域,然后分别按照对应位置相乘再相加,3*1+1*1+2*1+0*0+0*0+0*0+1*(-1)+8*(-1)+2*(-1)=-5;
按照上述的计算方法逐步按右移一个步长(步长可以设定为1,2,...等),然后按往下移,逐渐计算相应的值,得出最终的值。
如上图显示,对于第一个图像矩阵对应的图,一边是白色,一边是黑色,那么中间就会存在一个垂直的边缘,我知芦们可以选择一个垂直边缘检测过滤器,如乘法右边的矩阵,那么两者做卷积后得出的图会显示如等号右边的结果矩阵对应的灰度图中间会有一个白色的中间带,也就是检测出来的边缘,那为什么感觉中间边缘带会比较宽呢?而不是很细的一个局域呢?原因是我们输入的图像只有6*6,过于小了,如果我们选择输出更大搭塌带的尺寸的图,那么结果来说就是相对的一个细的边缘检测带,也就将我们的垂直边缘特征提取出来了。
上述都是人工选择过滤器的参数,随着神经网络的发展我们可以利用反向传播算法来学习过滤器的参数
我们可以将卷积的顾虑器的数值变成一个参数,通过反向传播算法去学习,这样学到的过滤器或者说卷积核就能够识别到很多的衫含特征,而不是依靠手工选择过滤器。
- padding 操作,卷积经常会出现两个问题:
1.每经过一次卷积图像都会缩小,如果卷积层很多的话,后面的图像就缩的很小了;
2.边缘像素利用次数只有一次,很明显少于位于中间的像素,因此会损失边缘图像信息。
为了解决上述的问题,我们可以在图像边缘填充像素,也就是 padding 操作了。
如果我们设置在图像边缘填充的像素数为p,那么经过卷积后的图像是:(n+2p-f+1)x(n+2p-f+1).
如何去选择p呢
通常有两种选择:
-Valid:也就是说不填充操作(no padding),因此如果我们有nxn的图像,fxf的过滤器,那么我们进行卷积nxn fxf=(n-f+1)x(n-f+1)的输出图像;
-Same:也就是填充后是输出图像的大小的与输入相同,同样就有(n+2p)x(n+2p) fxf=nxn,那么可以算,n+2p-f+1=n,得到p=(f-1)/2。
通常对于过滤器的选择有一个默认的准则就是选择过滤器的尺寸是奇数的过滤器。
- 卷积步长设置(Strided COnvolution)
卷积步长也就是我们进行卷积操作时,过滤器每次移动的步长,上面我们介绍的卷积操作步长默认都是1,也就是说每次移动过滤器时我们是向右移动一格,或者向下移动一格。
但是我们可以对卷积进行步长的设置,也就是我们能够对卷积移动的格数进行设置。同样假如我们的图像是nxn,过滤器是fxf,padding设置是p,步长strided设置为s,那么我们进行卷积操作后输出的图像为((n+2p-f)/s+1)x((n+2p-f)/s+1),那么这样就会出现一个问题,如果计算结果不是整数怎么办?
一般是选择向下取整,也就是说明,只有当我们的过滤器完全在图像上能够覆盖时才对它进行计算,这是一个惯例。
实际上上述所述的操作在严格数学角度来说不是卷积的定义,卷积的定义上我们计算的时候在移动步长之前也就是对应元素相乘之前是需要对卷积核或者说我们的过滤器进行镜像操作的,经过镜像操作后再把对应元素进行相乘这才是严格意义上的卷积操作,在数学角度上来说这个操作不算严格的卷积操作应该是属于互相关操作,但是在深度学习领域中,大家按照惯例都省略了反转操作,也把这个操作叫做卷积操作
我们知道彩色图像有RGB三个通道,因此对于输入来说是一个三维的输入,那么对三维输入的图像如何进行卷积操作呢?
例子,如上图我们输入图像假设为6×6×3,3代表有RGB三个通道channel,或者可以叫depth深度,过滤器的选择为3×3×3,其中需要规定的是,顾虑器的channel必须与输入图像的channel相同,长宽没有限制,那么计算过程是,我们将过滤器的立体覆盖在输入,这样对应的27个数对应相乘后相加得到一个数,对应到我们的输出,因此这样的方式进行卷积后我们得出的输出层为4×4×1。如果我们有多个过滤器,比如我们分别用两个过滤器一个提取垂直特征,一个提取水平特征,那么输出图4×4×2 。也就是代表我们输出的深度或者说通道与过滤器的个数是相等的。
第l层的卷积标记如下:
加入我们的过滤器是3×3×3规格的,如果我们设定10个过滤器,那么需要学习的参数总数为每个过滤器为27个参数然后加上一个偏差bias那么每个过滤器的参数为28个,所以十个过滤器的参数为280个。从这里也就可以看出,不管我们输入的图片大小是多大,我们都只需要计算这些参数,因此参数共享也就很容易理解了。
为了缩减模型的大小,提高计算速度,同时提高所提取特征的鲁棒性,我们经常会使用池化层。池化层的计算方式与卷积类似,只是我们需要对每一个通道都进行池化操作。
池化的方式一般有两种:Max Pooling和Average Pooling。
上面为Max Pooling,那么计算方法与卷积类似,首先设定超参数比如过滤器的大小与步长,然后覆盖到对应格子上面,用最大值取代其值作为输出的结果,例如上图为过滤器选择2×2,步长选择为2,因此输出就是2×2的维度,每个输出格子都是过滤器对应维度上输入的最大值。如果为平均池化,那么就是选择其间的平均值作为输出的值。
因此从上面的过程我们看到,通过池化操作能够缩小模型,同时能让特征值更加明显,也就提高了提取特征的鲁棒性。
CNN网络简介
卷积神经网络简介(Convolutional Neural Networks,简称CNN)
卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络(Convolutional
Neural
Networks-简称CNN)。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。
K.Fukushima在1980年提出的新识别机是卷积神经网络的第一个实现网络。随后,更多的科研工作者对该网络进行了改进。其中,具有代表性的研究成果是Alexander和Taylor提出的“改进认知机”,该方法综合了各种改进方法的优点并避免了耗时的误差反向传播。
一般地,CNN的基本结构包括两层,其一为特征提取层,每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征。一旦该局部特征被提取后,它与其它特征间的位置关系也随之确定下来;其二是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射是一个平面,平面上所有神经元的权值相等。特征映射结构采用影响函数核小的sigmoid函数作为卷积网络的激活函数,使得特征映射具有位移不变性。此外,由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数。卷积神经网络中的每一个卷积层都紧跟着一个用来求局部平均与二次提取的计算层,这种特有的两次特征提取结构减小了宴滚特征分辨率。
CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。由于CNN的特征检测层通过训练数据进行学习,所以在使用CNN时,避免了显示的特征抽取,而隐式地从训练数据中进行学习;再者由于同一特征映射面上的神经元权值相同,所以网络可以并行学习,这也是卷积网络相对于神经元彼此相连网络的一大优势。卷积神经网络以其局部权值共享的特殊结构在语音识别和图像处理方面有着独特的优越性,其布局更接近于实际的生物神经网络,权值共享降低了网络的复杂性,特别是多维输入向量的图像可以直接输入网络这一特点避免了特征提取和分类过程中数据重建的复杂度。
1. 神经网络
首先介绍神经网络,这一步的详细可以参考资源1。简要介绍下。神经网络的每个单元如下:
其对应的公式如下:
其中,该单元也可以被称作是Logistic回归模型。当将多个单元组合起来并具有分层结构时,就形成了镇羡神经网络模型。下图展示了一个具有一个隐含层的神经网络。
其对应的公式如下:
比较类似的,可以拓展到有2,3,4,5,…个隐含层。
神经网络的训练方法也同Logistic类似,不过由于其多层性,还需要利用链式求导法则对隐含层的节点进行求导,即梯度下降+链式求导法则,专业名称为反向传播。关于训练算法,本文暂不涉及。
2 卷积神经网络
在图像处理中,往往把图像表示为像素的向量,比如一个1000×1000的图像,可以表示为一个1000000的向量。在上一节中提到的神经网络中,如果隐含层数目与输入层一样,即也是1000000时,那么输入层到隐含层的参数数据为1000000×1000000=10^12,这样就太多了,基本没法训练。所以图像处理要想练成神经晌旅余网络大法,必先减少参数加快速度。就跟辟邪剑谱似的,普通人练得很挫,一旦自宫后内力变强剑法变快,就变的很牛了。
2.1 局部感知
卷积神经网络有两种神器可以降低参数数目,第一种神器叫做局部感知野。一般认为人对外界的认知是从局部到全局的,而图像的空间联系也是局部的像素联系较为紧密,而距离较远的像素相关性则较弱。因而,每个神经元其实没有必要对全局图像进行感知,只需要对局部进行感知,然后在更高层将局部的信息综合起来就得到了全局的信息。网络部分连通的思想,也是受启发于生物学里面的视觉系统结构。视觉皮层的神经元就是局部接受信息的(即这些神经元只响应某些特定区域的刺激)。如下图所示:左图为全连接,右图为局部连接。
在上右图中,假如每个神经元只和10×10个像素值相连,那么权值数据为1000000×100个参数,减少为原来的千分之一。而那10×10个像素值对应的10×10个参数,其实就相当于卷积操作。
2.2 参数共享
但其实这样的话参数仍然过多,那么就启动第二级神器,即权值共享。在上面的局部连接中,每个神经元都对应100个参数,一共1000000个神经元,如果这1000000个神经元的100个参数都是相等的,那么参数数目就变为100了。
怎么理解权值共享呢?我们可以这100个参数(也就是卷积操作)看成是提取特征的方式,该方式与位置无关。这其中隐含的原理则是:图像的一部分的统计特性与其他部分是一样的。这也意味着我们在这一部分学习的特征也能用在另一部分上,所以对于这个图像上的所有位置,我们都能使用同样的学习特征。
更直观一些,当从一个大尺寸图像中随机选取一小块,比如说 8×8 作为样本,并且从这个小块样本中学习到了一些特征,这时我们可以把从这个
8×8 样本中学习到的特征作为探测器,应用到这个图像的任意地方中去。特别是,我们可以用从 8×8
样本中所学习到的特征跟原本的大尺寸图像作卷积,从而对这个大尺寸图像上的任一位置获得一个不同特征的激活值。
如下图所示,展示了一个33的卷积核在55的图像上做卷积的过程。每个卷积都是一种特征提取方式,就像一个筛子,将图像中符合条件(激活值越大越符合条件)的部分筛选出来。
2.3 多卷积核
上面所述只有100个参数时,表明只有1个100*100的卷积核,显然,特征提取是不充分的,我们可以添加多个卷积核,比如32个卷积核,可以学习32种特征。在有多个卷积核时,如下图所示:
上图右,不同颜色表明不同的卷积核。每个卷积核都会将图像生成为另一幅图像。比如两个卷积核就可以将生成两幅图像,这两幅图像可以看做是一张图像的不同的通道。如下图所示,下图有个小错误,即将w1改为w0,w2改为w1即可。下文中仍以w1和w2称呼它们。
下图展示了在四个通道上的卷积操作,有两个卷积核,生成两个通道。其中需要注意的是,四个通道上每个通道对应一个卷积核,先将w2忽略,只看w1,那么在w1的某位置(i,j)处的值,是由四个通道上(i,j)处的卷积结果相加然后再取激活函数值得到的。
所以,在上图由4个通道卷积得到2个通道的过程中,参数的数目为4×2×2×2个,其中4表示4个通道,第一个2表示生成2个通道,最后的2×2表示卷积核大小。
2.4 Down-pooling
在通过卷积获得了特征 (features)
之后,下一步我们希望利用这些特征去做分类。理论上讲,人们可以用所有提取得到的特征去训练分类器,例如 softmax
分类器,但这样做面临计算量的挑战。例如:对于一个 96X96
像素的图像,假设我们已经学习得到了400个定义在8X8输入上的特征,每一个特征和图像卷积都会得到一个 (96 − 8 + 1) × (96 − 8+ 1) = 7921 维的卷积特征,由于有 400 个特征,所以每个样例 (example) 都会得到一个 892 × 400 =3,168,400 维的卷积特征向量。学习一个拥有超过 3 百万特征输入的分类器十分不便,并且容易出现过拟合 (over-fitting)。
为了解决这个问题,首先回忆一下,我们之所以决定使用卷积后的特征是因为图像具有一种“静态性”的属性,这也就意味着在一个图像区域有用的特征极有可能在另一个区域同样适用。因此,为了描述大的图像,一个很自然的想法就是对不同位置的特征进行聚合统计,例如,人们可以计算图像一个区域上的某个特定特征的平均值(或最大值)。这些概要统计特征不仅具有低得多的维度 (相比使用所有提取得到的特征),同时还会改善结果(不容易过拟合)。这种聚合的操作就叫做池(pooling),有时也称为平均池化或者最大池化 (取决于计算池化的方法)。
至此,卷积神经网络的基本结构和原理已经阐述完毕。
2.5 多层卷积
在实际应用中,往往使用多层卷积,然后再使用全连接层进行训练,多层卷积的目的是一层卷积学到的特征往往是局部的,层数越高,学到的特征就越全局化。
3 ImageNet-2010网络结构
ImageNetLSVRC是一个图片分类的比赛,其训练集包括127W+张图片,验证集有5W张图片,测试集有15W张图片。本文截取2010年AlexKrizhevsky的CNN结构进行说明,该结构在2010年取得冠军,top-5错误率为15.3%。值得一提的是,在今年的ImageNetLSVRC比赛中,取得冠军的GoogNet已经达到了top-5错误率6.67%。可见,深度学习的提升空间还很巨大。
下图即为Alex的CNN结构图。需要注意的是,该模型采用了2-GPU并行结构,即第1、2、4、5卷积层都是将模型参数分为2部分进行训练的。在这里,更进一步,并行结构分为数据并行与模型并行。数据并行是指在不同的GPU上,模型结构相同,但将训练数据进行切分,分别训练得到不同的模型,然后再将模型进行融合。而模型并行则是,将若干层的模型参数进行切分,不同的GPU上使用相同的数据进行训练,得到的结果直接连接作为下一层的输入。
上图模型的基本参数为:
输入:224×224大小的图片,3通道
第一层卷积:5×5大小的卷积核96个,每个GPU上48个。
第一层max-pooling:2×2的核。
第二层卷积:3×3卷积核256个,每个GPU上128个。
第二层max-pooling:2×2的核。
第三层卷积:与上一层是全连接,3*3的卷积核384个。分到两个GPU上个192个。
第四层卷积:3×3的卷积核384个,两个GPU各192个。该层与上一层连接没有经过pooling层。
第五层卷积:3×3的卷积核256个,两个GPU上个128个。
第五层max-pooling:2×2的核。
第一层全连接:4096维,将第五层max-pooling的输出连接成为一个一维向量,作为该层的输入。
第二层全连接:4096维
Softmax层:输出为1000,输出的每一维都是图片属于该类别的概率。
4 DeepID网络结构
DeepID网络结构是香港中文大学的Sun
Yi开发出来用来学习人脸特征的卷积神经网络。每张输入的人脸被表示为160维的向量,学习到的向量经过其他模型进行分类,在人脸验证试验上得到了97.45%的正确率,更进一步的,原作者改进了CNN,又得到了99.15%的正确率。
如下图所示,该结构与ImageNet的具体参数类似,所以只解释一下不同的部分吧。
上图中的结构,在最后只有一层全连接层,然后就是softmax层了。论文中就是以该全连接层作为图像的表示。在全连接层,以第四层卷积和第三层max-pooling的输出作为全连接层的输入,这样可以学习到局部的和全局的特征。
[img]初识卷积神经网络
按照上文中介绍的神经网络,如果处理一张图片的话,参数有多大呢?假设图像的大小为1200 * 1200,下一层的神经元个数为10^5,不难得出参数量为 1200 * 1200 * 10^5 = 1.44 * 10^12。可以看出一层的参数量就是很大了,如果再多加几层,那参数量大的应该是超出了内存的承受范围,这从研究和工程的角度都是不允许的。而且参数太多,很容易造成过拟合。
怎么解决这个问题呢?经过研究,从稀疏连接、参数共享和平移不变性三个方面来进行改进。
可能有些人不懂这种稀疏连接是怎么实现此汪的?先来说说卷积操作,以一个二维矩阵为输入(可以看作是一个单通道图片的像素值),卷积产生的稀疏连接根本原因就是这块的核函数,一般的核函数的大小远小于输入的大小。
以下图例:卷积操作可以看做是一种滑窗法,首先,输入维度是4×4,输入中红色部分,先和核函数中的元素对应相乘,就是输出中左上角的元素值s1,即 s1 = a×k1+b×k2+e×k3+f×k4。
参数共享是指在一个模型的多个函数中使用相同的参数,它是卷积运算带来的固有属性。
在全连接中,计算每层的输出时,权重矩阵中的元素只作用于某一个输入元素一次;
而在卷积神经网络中,卷积核中的每一个元素将作用于每一个局部输入的特定位置上。根据参数共享的思想,我们只需要学习一组参数集合,而不需要针对每一个位置的每一个参数来进行优化学习,从而大大降低了模型的存储需求森拿仔。
如果一个函数的输入做了一些改变,那么输出也跟着做出同样的改变,这就时平移不变性。
平移不变性是由参数共享的物理意义所得。在计算机视觉中,假如要识别一个图片中是否有一只猫,那么无论这只猫在图片的什么位置,我们都应该识别出来,即就是神经网络的输出对于平移不变性来说是等变的。
根据稀疏连接、参数共享和平移不变性三个思想,卷积核就应运而生了。看下图,有个直观的感受。
上图就是在一个通道上做的卷积,但现实中,图片一般是由3个通道构成(R\G\B),卷积核也由二维的平面生成了三维立体。具体的样子如下图:
如上图所示,Filter W0 即为卷积核,其大小为(3 * 3 * 3),每个3*3的二维平面会和图片的相应的通道进行卷积,3个通道的结果相加后加上统一的偏置b0,结果即为Output Volume 第一个通道的第一个位置的数。
从上图还可以看出 Input Volume 四周加了0,敏谨这个0叫做padding,一般是为了卷积划动的过程中包含原有的所有数;而多通道卷积核计算过程和卷积核计算过程,不太一样的是多通道卷积核计算过程每次滑2下,这个滑动的距离叫做步长-stride。
所以通过输入大小和卷积核大小,我们可以推断出最终的结果的大小。比如上图卷积核计算过程,输入大小为5 * 5,卷积核为3 * 3,那么卷积核在原图上每次滑动一格,横向滑3次,纵向也是3次,最终结果为 3 * 3。在多通道卷积核计算过程中,每次滑动为2格,横向滑3次,纵向也是3次,最终结果也为 3*3。可以推断出,最终大小的公式为:(输入大小 - 卷积核大小)/ 滑动步长。
在卷积核计算过程,可以看出经过卷积后的大小变小了,那能不能经过卷积计算且大小不变呢?这里,引出了 padding 的另一个作用,保证输入和输出的大小一致。比方输出的 5*5 加 padding,那么四周就被0围绕了,这时的输入大小就变为7 * 7, 再经过 3 * 3的卷积后,按照上边推断出的公式,可以得出 最终的大小为 5 * 5,这时与输入大小保持了一致。
池化层夹在连续的卷积层中间, 用于压缩数据和参数的量,减小过拟合。
简而言之,如果输入是图像的话,那么池化层的最主要作用就是压缩图像。
池化层用的方法有Max pooling 和 average pooling,而实际用的较多的是Max pooling。下图演示一下Max pooling。
对于每个2 * 2的窗口选出最大的数作为输出矩阵的相应元素的值,比如输入矩阵第一个2 * 2窗口中最大的数是1,那么输出矩阵的第一个元素就是1,如此类推。
全连接层的部分就是将之前的结果展平之后接到最基本的神经网络了。
根据上边的介绍,可以得出,卷积核的通道数目和输入的图像的通道数目是保持一致的,而输出的通道数目是和卷积核数目是一致的。这样参数量可以得出,假设输入的通道为5,卷积核大小为 3 * 3 ,输出的通道数目为10,那么参数量为:3 * 3 * 5 * 10,其中3 * 3 * 5是1个卷积核的参数个数,3 * 3 * 5 * 10 是 10个卷积核的参数个数,也就总共的参数个数。
在卷积中,滑动一次会经过多次的点乘,只经过一次的加法,所以加法的计算量可以忽略不计。其中,滑动一次会的点乘次数和卷积核的大小有关系,比方 3 * 3的卷积,则是经过了 3 * 3 = 9次点积。一共滑动多少次和输出大小有关系,比方 输出的结果也为 3 * 3,那么就是滑动了9次。这样就可以得出输入和输出单通道时计算量 3 * 3 * 3 * 3 = 81。那么对于输入多通道时,卷积核也需要增加相应的通道数目,此时应该在刚才的计算量上乘以通道的数目,得出输入多通道的一个卷积核的计算量。这样,对于输出多通道,总的计算量则是乘以多个卷积核即可。
关于卷积神经网络模型和常见的卷积神经网络模型的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。