什么是机器学习(机器学习算法)
本篇文章给大家谈谈什么是机器学习,以及机器学习算法对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
机器学习是什么
机器学习(Machine Learning,ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分卜弯析、算法复杂度理论等多门学科。[1]专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算槐岁机具有智能的根本途径。它的应用已遍及人工智能的各个分支,如专家系统、自动推理、自然语言理解、模式识别、计算机视觉、智能机器人等领域。其型明闷中尤其典型的是专家系统中的知识获取瓶颈问题,人们一直在努力试图采用机器学习的方法加以克服。
[img]什么是机器学习?和深度学习是什么关系?
机器学习(Machine Learning,ML)是人工智能的子领域,也是人工智能的核心。它囊括了几乎所有对世界影响最大的方法(包括深度学习)。机器学习理论主并伏要是设计和分析一些让计算机可以自动学习的算法。
深度学习(DeepLearning,DL)属于机器学习的子类。它的灵感来源于人类大脑的工作方式,是利用深度神经网绝销携络来解决特征表达的一种学习过程。深度神经网络本身并非是一个全新的概念,可理解为包含多个隐含层的神经网络结构。为了提高深层神经网络的训练效果,人们对神经元的连接方法以及激活函数等方面做出了调整。其目的在于建立、模拟人脑进行分析学习的神经网络,模仿人脑的机制来解释数据,如文本、图像、声音。
1、应用场景
机器学习在指纹识别、特征物体检测等领域的应用基本达到了商业化的要求。
深度学习主要应用于文字识别、人脸技术、语义分析、智能监控等领域。目前在智能硬件、教育、医疗等行业也在快速布局。
2、所需数据量
机器学习能够适应各种数据量,特别是数据量较小的场景。如果数据量迅速增加,那么深度学习的效果将更加突出,这是因为深度学习算法需要大量数据才能完美理解。
3、执行时间
执行时间是指训练算法所需要的时间量。一般来说,深度学习算法需斗简要大量时间进行训练。这是因为该算法包含有很多参数,因此训练它们需要比平时更长的时间。相对而言,机器学习算法的执行时间更少。
4、解决问题的方法
机器学习算法遵循标准程序以解决问题。它将问题拆分成数个部分,对其进行分别解决,而后再将结果结合起来以获得所需的答案。深度学习则以集中方式解决问题,而不必进行问题拆分。
什么是机器学习
机器学习通过从数据里提取规则或模式来把数据转换成信息。主要的方法有归纳学习法和分析学习法。数据首先被预处理,形成特征,然后根据特征创建某种模型。机器学习算法分析收集到的数据,分配权重、阈值和其他参数达到学习目的。如果只想把数据分成不同的类,那么“聚类”算法就够了;如果需要预测,则需要一个“分类”算法。OpenCV库里面包含的是基于概率统计的机器学习方法,贝叶斯网络、马尔科夫随机场、图模型等较新的算法还在成长过程中,所以OpenCV还没有收录。 机器学习的算法有很多很多:1、Mahalanobis 2、K-means 非监督的聚类方法3、朴素贝叶斯分类器 特征是高斯分布统计上相互独立 条件比较苛刻4、决策数 判别分类器,根据阈值分类数者槐陆据,速度快。ID3,C4.5 5、Boosting 多个判别子分类器的组合6、随机森林 由多个决策树组成7、人脸检测/Haar分类器 使用Boosting算法8、期望最大化EM 用于聚类的非监督生成算法 9、K-近邻 最简单的分类器10、神经网络(多层感知器) 训练分类器很慢,但是识别很快11、支持向量机 SVM 可以分类,也可以回归。通过分类超平面实现在高维空间里的最优分类 12、遗传算法 借鉴生物遗传机制 ,随机化非线性计算算法总之呢,个人觉得,机器学习、数据挖掘、模式识别、专家系统等方向和领域目前还是一种比较混乱的局面。学术界和商业界可能是不同的,关于算法的理论研究和使用这些方法生成商品是分别关注的。按照不同的领域、不同的方法可以划分出众多的分支。但是有一点是肯定的,这些在上世纪80年代提出来的公式和证明,如今正在变成一行行的代码,在一些猫(tomcat)、IIS等服务器的支持下,爬上了网络,到处寻觅对主人有用的信息,然后运送到网络中,最终生成产品,或者半产品。看看你电脑上的那根网线,它那么小,但是很难想象它从你的电脑上拿走了什么,又给你送来了什么。有些远了,继续说数据这些事。目前我接触过的算法有:(太多了,一时间真不好说出来) 神经网络(感知器、BP、RBF等很多的算法),遗传算法,支持向量机,层次分析法,各种回归,灰色系统(国产的方法,用于不确定知识的预测),粗糙集,贝叶斯网络,时间序列分析(也有很多)。学习和研究纸面的明肆算法公式只是第一步,不可以忽略的基础,如何使用这些方法,在浩首顷瀚的互联网上找到自己需要的、满足客户需要的数据和信息,从而让需要的人能够更加方便地得到,是今后的重头戏了。貌似很多的企业已经进军数据仓库这一块,并尝到了巨大的甜头,也有企业养着一队预备军,专注研发,随时准备奔赴前线,占领市场。无线网络市场的竞争已经到了激烈的局面,普适计算的时代也快到了吧。它依赖于硬件产品的可穿戴,和软件产品的内嵌、快速响应。总而言之,越来越人性化,谁都不愿意抱着笔记本电脑蹲厕所,是吧?
关于什么是机器学习和机器学习算法的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。