数据挖掘名词解释(数据挖掘名词解释题)
本篇文章给大家谈谈数据挖掘名词解释,以及数据挖掘名词解释题对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、名词解释。孤立点。正在考数据挖掘
- 2、名词解释信息
- 3、数据挖掘名词解释
- 4、信息技术名词解释
- 5、大数据的名词解释是什么
- 6、数据库 名词解释
名词解释。孤立点。正在考数据挖掘
孤立点(英文:Acnode)在数学上是指坐标满足曲线方程,但并不落在曲线上的点。
孤纯蠢立点也可以尘裤早指是在数据集合中与大派雀多数数据的特征或不一致的数据。
此外,在离散数学的图论中孤立点的定义是无边关联的点。
[img]名词解释信息
信息(名词解释)
2020-05-02 5页 用App查看
最强教育的店
关注
11、比较
比较也称对比,是通过观察、分析,找出研究对象的相同点和不同点,它是认识事物的一种逻辑思维方法。通过比较揭示对象之间的异同是人类认识客观事物最原始、最基本的方法。
根据不同的标准和角度,比较可以分为不同的类型,如时间上的比较和空间上的比较。时间上的比较是一种纵向比较,即将同一事物在不同时期的某些指标(如产品的质量、性能、成本、价格等)进行对比,以动态的认识和把握该事物的发展变化的历史、现状和走势。空间上的比较是一种横向的比较,即将某一时期不同国家、不同地区、不同部门的同一类事物进行对比,找出差距,判明优劣。可分为横向比较和纵向比较。横向比较是指同类事物的相同属性在某时刻呈现的异同;
使用比较法时应注意不同的比较对象之间要有可比性、根据比较目的的合理设计和选择比较指标、多使用数据和图表等。
12、分析
(分析与综合是揭示个别与一般、现象与本质的内在联系的逻辑思维方法,是科学抽象的主要手段,它主要解决部分与整体的问题。)
分析: 就是把客观事物整体消空分解为部分或要素,并根据事物之间或事物内部各要素之间的特定关系,通过推理、判断、达到认识事物目的的一种逻辑思维方法。一般有因果分析、表象和本质分析、相关分析等等。
分析的步骤: 明确分析的目的;将事物分解为若干个相对独立的要素;分别考察分析对象以及各个要素的特点;探明各个要素以及构成事物整体的各个要素之间的相互关系,并进而研究这些关系的性质、表现形式、在事物发展变化中的地位和作用。
13、德尔菲法
德尔菲法在我国亦称专家调查法(专家评估法)。是以专家作为索取信息的对象,依靠专家的知识和经验,由专家通过调查研究,对问题作出判断、评估、预测的一种方法。
具有:匿名性、反馈性、统计性等三个主要特点。
其步骤有:a、调查前的准备工作;b、第一轮调查、c、第二轮调查;d、第三轮调查;e、第四轮调查;
德尔菲法的优势与不足:
优势:a、迅速达成共识;b、参加人员不受地域限制;c、覆盖众多领域的专家;d、避免团队迷失;f、对于预测特定、单一维度的问题效果明显;
劣势:a、在初始问卷中问题的交叉影响被忽略;b、范式迁移的效果不明显;c、该方法的成效还取决于参与人员的质量水准;d、持有先人之见或卷入德尔菲团队自己的观点;e、不同意见被忽略或得不到重视;f、低估德尔菲法的应用条件和要求;
14、交叉影响分析法
交叉影响分拿尘瞎析法又称交叉概论法或交叉影响矩阵法,正是用概论的形式说明一事件发生对与这个事件相关的其他事件发生可能性的影响以及影响程度;交叉影响分析法是德尔菲法的一种修正和补充。
15、布拉德福定律
布拉德福定律是由英国著名文献学家B.C.Bradford于二十世纪30年代率先提出的描述文献分散规律的经验定律。其文字表述为:如果将科技期刊按其刊载某学科专业论文的数量多少,以递减顺序排列,那么可以把期刊分为专门面对这个学科的核心区、相关区和非相关区。各个区的文章数量相等,此时核心区、相关区,非相关区期刊数量成1:n:n2(n的平方)的关系。
布拉德福定律是文献计量学的重要定律之一,它和洛特卡定律、Zipf定律一起被并称为文献计量学的三大定律。
编辑本段国外研究现状
关于布拉德福定律在网络环境中的适用性,国外学者在1997 年Almind 提出网络计量学这一概念后就进行了相关的研究。Bar-Ilan 通过将学位论文及其发布新闻与期刊及其论文的分布进行比较分析,然后根据布氏定律确定了以“疯牛病”为主题的核心新闻组,发现布氏定律同样适合于网页环境,但此研究是针对某一主题且数据具有一定局限性,不具备广泛适用性。Cui 通过对美国排名前25 位的医学院网页进行链接分析,他发现了网址链接的集中离散分布现象且网址数之间的比值为78:452:1201,接近1:4:42,这一结果表明医学院网页链接符合布拉德福定律,由于数据选取的局限性,对于这一定律是否适用于所有的网络环境则有待进一步验证。Tsay MY,yang YH 对MEDLINE 数据库中关于RCT的文献作了文献计量分析,发现通过区域分析可知第四区的期刊数明显大于预测值,但是四个区的期刊数之比较兄做接近于l:2.5:2.52(6.25):2.53(15.6),符合传统的布氏定律,但又有明显的不同,文中对布氏定律的验证方法具有单一性,不能从多方面证明这种适用性。Behrens H 和Luksch P 对无机晶体结构数据库中晶体学主题的文献进行分析,利用莱姆库勒函数对样本数据进行拟合分析,验证得知晶体学主题的文献符合布氏定律的分布,这一研究主要针对数据库数据且只对数据进行了单一方法的分析,并不能代表所有网络信息的分布 。Cristina Faba-Perez 通过对网络空间被链情况的图像分析发现,所得图像并不符合典型的布氏定律分布且通过区域分析可知各个分区的比例数也都不满足1:n:n2 的关系。
16、层次分析法
层次分析法,是将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排列(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法,称为层次分析法。(ahp)是对方案的多指标系统进行分析的一种层次化、结构化决策方法,它将决策者对复杂系统的决策思维过程模糊化、数量化。
17、数据挖掘
A、技术上定义:数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
B、商业角度:数据挖掘是一种新的商业信息处理技术,其主要特点是对商业数据库中的大量业务数据进行抽取、转换、分析和其他模型化处理,从中提取辅助商业决策的关键性数据。简而言之,数据挖掘其实是一类深层次的数据分析方法。
18、信息源
信息源是人们在科研活动、生产经营活动和其他一切活动中所产生的成果和各种原始记录,以及对这些成果和原始记录加工整理得到的成品都是借以获得信息的源泉。信息源内涵丰富,它不仅包括各种信息载体,也包括各种信息机构;不仅包括传统印刷型文献资料,也包括现代电子图书报刊;不仅包括各种信息储存和信息传递机构,也包括各种信息生产机构。
信息源的类型
(1)按信息源产生的时间顺序来划分
先导信息源、即时信息源、滞后信息源。
先导信息源是指产生于社会活动之前的信息源。如天气预报。 即时信息源是指在社会活动中产生的,如工作纪录,实验报告等。 滞后信息源如报刊。
(2)按信息源传播形式来划分
口传信息源、文献信息源和实物信息源。口传信息源存在于人脑的记忆中,人们通过交流、讨论、报告会的方式交流传播 实物信息源存在于自然界和人工制品中,人们可通过实践、实验、采集、参观等方式交流传播 文献信息源存在于文献中,人们可以通过阅读、视听学习等方式交流传播。(包括印刷型信息源和电子信息源等)
(3)按信息的加工和集约程度分
一次信息源:直接来自作者的原创的,没有经过任何加工处理的信息 二次信息源:感知信息源 从一次信息源中加工处理提取的信息 三次信息源:再生信息源或工具书(百科全书,辞典,手册,年鉴) 四次信息源:图书馆、档案馆、数据库、博物馆。 联合国教科文组织1976年出版的《文献术语》一书将信息源定义为:个人为满足其信息需要而获得信息的来源,称信息源。一切产生、生产、存贮、加工、 传播信息的源泉都可以看作是信息源。
信息源是人们在科研活动、生产经营活动和其他一切活动中所产生的成果和各种原始记录,以及对这些成果和原始记录加工整理得到的成品都是借以获得信息的源泉。信息源内涵丰富,它不仅包括各种信息载体,也包括各种信息机构;不仅包括传统印刷型文献资料,也包括现代电子图书报刊;不仅包括各种信息储存和信息传递机构,也包括各种信息生产机构。
19、引文分析法
引文分析法,就是利用各种数学及统计学的方法进行比较、归纳、抽象、概括等的逻辑方法,对科学期刊、论文、著者等分析对象的引用和被引用现象进行分析,以揭示其数量特征和内在规律的一种信息计量研究方法。
引文分析方法的数学基础是概率论与数理统计。在进行分析比较时,已将其作用排除在测度结果之外了。
从不同的角度和标准来划分,引文分析方法有着不同的类型。如果从获取引文数据的方式来看,有直接法和间接法之分。前者是直接从来源期刊中统计原始论文所附的被引文献,从而取得数据并进行引文分析的方法;后者则是通过“科学引文索引”(SCI)、“期刊引用报告”(JCR)等引文分析工具,查得引文数据再进行分析的一种方法。若从文献引证的相关程度来看,则有自引分析、双引分析、三引分析等类型。如果从分析的出发点和内容来看,引文分析大致有三种基本类型:
1.引文数量分析:主要用于评价期刊和论文;研究文献情报流的规律等。
2.引文网状分析:主要用于揭示科学结构、学科相关程度和进行文献检索等。
3.引文链状分析:科技论文间存在着一种“引文链”,如文献A被文献B引,B被文献C引,C又被文献D引,等等。对这种引文的链状结构进行研究可以揭示科学的发展过程并展望未来的前景。
20、时间序列预测法
时间序列预测法是一种历史资料延伸预测,也称历史引伸预测法。是以时间数列所能反映的社会经济现象的发展过程和规律性,进行引伸外推,预测其发展趋势的方法。
时间序列,也叫时间数列、历史复数或动态数列。它是将某种统计指标的数值,按时间先后顺序排到所形成的数列。时间序列预测法就是通过编制和分析时间序列,根据时间序列 简单序时平均数法 举例
所反映出来的发展过程、方向和趋势,进行类推或延伸,借以预测下一段时间或以后若干年内可能达到的水平。其内容包括:收集与整理某种社会现象的历史资料;对这些资料进行检查鉴别,排成数列;分析时间数列,从中寻找该社会现象随时间变化而变化的规律,得出一定的模式;以此模式去预测该社会现象将来的情况。
继续阅读
试读结束,购买后可阅读全文或下载
¥6.00
原价购买
VIP立减1.2元
购买后可发送文档到邮箱 PC/APP端随时阅读下载
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
分享
收藏
下载
分享
收藏
转存
相关推荐文档
长治高学历相亲群,诚心找结婚对象,30岁以上离异人士速进
珍爱网相亲群 广告
下载原文档,方便随时阅
数据挖掘名词解释
挖吵粗燃掘的解释
[excavate;dig;unearth]
向下挖以发掘 挖掘文物 详细解释 (1).挖,掏。 艾青 《他死在第二次》 诗:“人们在他所守卫的河岸不远的地方,挖掘了一条浅坑。” (2).引申为深入开发,探求。 宗白华 《美凳宏学 向导 ·美学家寄语》 :“我们现在要 大力 挖掘旧的资料中的有 价值 的 东西 。”
词语分解
挖的解释 挖 ā 掘,掏:挖掘。挖墙脚(喻拆升虚台)。 挖空心思 。 抓:挖破了。 掘补填 部首 :扌; 掘的解释 掘 é 刨,挖:掘土。掘井。掘进。发掘。挖掘。 古同“崛”, 崛起 。 古同“倔”, 倔强 。 挖 部首:扌。
信息技术名词解释
信息技术是指有关信息的收集、识别、提取、变换、存贮、传递、处理、检索、检测、分析和利用等的技术。凡涉及到这些过程和技术的工作部门都可称作信息部门。 信息技术能够延长或扩展人的信息功能。信息技术可能是机械的,也可能是激光的;可能是电子的,也可能是生物的。信息技术主要包括传感技术,通信技术,计算机技术和缩微技术等。 传感技术的任务是延长人的感觉器官收集信息的功能;通信技术的任务是延长人的神经系统传递信息的功能;计算机技术则是延长人的思维器官处理信息和决策的功能,缩微技术是延长人的记忆器官存贮信息的功能。当然,这种划分只是相对的、大致的,没有截然的界限。如传感系统里也有信息的处理和收集,而计算机系统里既有信息传递,也有信息收集的问题。
信息技术的特征应从如下两方面来理解:
1)信息技术具有技术的一般特征——技术性。具体表现为:方法的科学性,工具设备的先进性,技能的熟练性,经验的丰富性,作用过程的快捷性,功能的高效性等。
2)信息技术具有区别于其它技术的特征——信息性。具体表现为:信息技术的服务主体是信息,核心功能是提高信息处理与利用的效率、效益。由信息的秉性决定信息技术还具有普遍性、客观性、相对性、动态性、共享性、可变换性等特性。
近年来,随着云计算和物联网概念的提出,信息技术得到了前所未有的发展,而大数据则是在此基础上对现代信息技术革命的又一次颠覆,所以大数据技术主要是从多种巨量的数据中快速的挖掘和获取有价值的信息技术,因而在云时代的今天,大数据技术已经被我们所关注,所以数据挖掘技伏戚腔术成为最为关键的技术。尤其是在当前在日常信息关联和处理中越来越离不开数据挖掘技术和信息技术的支持。大数据,而主要是对全球的数据量较大的一个概括,且每年的数据增长速度较快。而数据挖掘,主要是从多种模糊而又随机、大量而又复杂且不规则的数据中,获得有用的信息知识,从数据库中抽丝剥茧、转换分析,从而掌握其潜在价值与规律。
北京理工大学大数据搜索与挖掘实验室张华平主任研发的NLPIR大数据语义智能分析技术是满足大数据挖掘对语法、词法和语义的综合应用。NLPIR大数据语义智能分析平台是根据中文数据挖掘的综合需求,融合了网络精准采集、自然语言理解、文本挖掘和语义搜索的研究成果,并针对互联网内容处理的全技术链条的共享开发平台。
NLPIR大数据语义智能分析平台主要有精准采集、文档转化、新词发现、批量分词、语言统计、文本聚类、文本分类、摘要实体、智能过滤缺衫、情感分析、文档去重、全文检索仔核、编码转换等十余项功能模块,平台提供了客户端工具,云服务与二次开发接口等多种产品使用形式。各个中间件API可以无缝地融合到客户的各类复杂应用系统之中,可兼容Windows,Linux, Android,Maemo5, FreeBSD等不同操作系统平台,可以供Java,Python,C,C#等各类开发语言使用。
大数据的名词解释是什么
大数据(big data),嫌缓或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。(在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中,大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法)大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、veracity(真实性)。大数据需要特殊的技术,包括大规模并行处理(MPP)数据库、数据挖掘电网、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
大数据的4个“V”,或者说特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。前文提到的网络日志、视频、图片、地理位置信息等链埋等。第三,数据的来源,直接导致分析结果的准确性和真实性。若数据来源是完整的并且真实,最终的分析结果以及决定将更加准确。第四,处理速度快,1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不棚者蚂同。业界将其归纳为4个“V”
从某种程度上说,大数据是数据分析的前沿技术。简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。明白这一点至关重要,也正是这一点促使该技术具备走向众多企业的潜力。
数据库 名词解释
数据库的概念:
数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它产生于距今六十多年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后,
数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方式。数据库有很多种类型,从最简单的存储有各种数据的表格到能够进行海量数据存储的大型数据库系统都在各个方面得到了广泛的应用。
在信息化社会,充分有效地管理和利用各类信息资源,是进行科学研究和决策管理的前提条件。数据库技术是管理信息系统、办公自动化系统、决策支持系统等各类信息系统的核心部分,是进行科学研究和决策管理的重要技术手段。
数据库的定义:
定义1:数据库(Database)是按照数据结构来组织、存储和管理数据的建立在计算机存储设备上的仓库。
简单来说是本身可视为电子化的文件柜——存储电子文件的处所,用户可以对文件中的数据进行新增、截取、更新、删除等操作。
在经济管理的日常工作中,常常需要把某些相关的数据放进这样的“仓库”,并根据管理的需要进行相应的处理。
例如,企业或事业单位的人事部门常常要把本单位职工的基本情况(职工号、姓名、年龄、性别、籍贯、工资、简历等)存放在表中,这张表就可以看成是一个数据库。有了这个"数据仓库"我们就可以根据需要随时查询某职工的基本情况,也可以查询工资在某个范围内的职工人数等等。这些工作如果都能在计算机上自动进行,那我们的人事管理就可以达到极高的水平。此外,在财务管理、仓库管理、生产管理中也需要建立众多的这种"数据库",使其可以利用计算机实现财务、仓库、生产的自动化管理。
定义2:
严格来说,数据库是长期唤镇储存在计算机内、有组织的、可共享的数据集合。数据库中的数据指的是以一定的数据模型组织、描述和储存在一起、具有尽可能小的冗余度、较高的数据独立性和易扩展性的特点并可在一定范围内为多个用户共享。
这种数据集合具有如下特点:尽可能不重复,以最优方和没粗式为某个特定组织的多种应用服务,其数据结构独立于使用它的应用程序,对数据的增、删、改、查由统一软件进行管理和控制。从发展的历史看,数据库是数据管理的高级阶段,它是由文件管理系统发展起来的。[1] [2]
数据库的处理系统:
数据库是一个单位或是一个应用领域的通用数据处理系统,它存储的是属于企业和事业部门、团体和个人的有关数据的集合。数据库中的数据是从全局观点出发建立的,按一定的数据模型进行组织、描述和存储。其结构基于数据间的自然联系,从而可提供一切必要的存取路径,且数据不再针对某一应用,而是面向全组织,具有整体的结构化特征。
数据库中的数据是为众多用户所共享其信息而建立的,已经摆脱了具体程序的限制和制约。不同的用户可以按各自的用法使用数据库中的数据;多个用户可以同时共享数据库中的数据资源,即不同的用户可以同时存取数据库中的同一个数据。数据共享性不仅满足了各用户对信息内容的要求,同时也满足了各用户之间信息通信的要求。
数据库的基本结构:
数据库的基本结构分三个层次,反映了观察数据库的三种不同角度。
以内模式为框架所组成的数据库叫做物理数据库;以概念模式为框架所组成的数据叫概念数据库;以外模式为框架所组成的数据库叫用户数据库。
⑴ 物理数据层。
它是数据库的最内层,是物理存贮设备上实际存储的数据的集合。这些数据是原始数据,是用户加工的对象,由内部模式描述的指令操作处理的位串、字符和字组成。
⑵ 概念数据层。
它是数据库的中间一层,是数据库的整体逻辑表示。指出了每个数据的逻辑定义及数据间的逻辑联系,是存贮记录的集合。它所涉及的是数据库所有对象的逻辑关系,而不是它们的物理情况,是数据库管理员概念下的数据库。
⑶ 用户数据层。
它是用户所看到和使用的数据库,表示了一个或一些特定用户使用的数据集合,即逻辑记录的集合。
数据库不同层次之间的联系是通过映射进行转换的。
数据库的主要特点:
⑴ 实现数据共享
数据共享包含所有用户可同时存取数据库中的数据,也包括用户可以用各种方式察局通过接口使用数据库,并提供数据共享。
⑵ 减少数据的冗余度
同文件系统相比,由于数据库实现了数据共享,从而避免了用户各自建立应用文件。减少了大量重复数据,减少了数据冗余,维护了数据的一致性。
⑶ 数据的独立性
数据的独立性包括逻辑独立性(数据库中数据库的逻辑结构和应用程序相互独立)和物理独立性(数据物理结构的变化不影响数据的逻辑结构)。
⑷ 数据实现集中控制
文件管理方式中,数据处于一种分散的状态,不同的用户或同一用户在不同处理中其文件之间毫无关系。利用数据库可对数据进行集中控制和管理,并通过数据模型表示各种数据的组织以及数据间的联系。
⑸数据一致性和可维护性,以确保数据的安全性和可靠性
主要包括:①安全性控制:以防止数据丢失、错误更新和越权使用;②完整性控制:保证数据的正确性、有效性和相容性;③并发控制:使在同一时间周期内,允许对数据实现多路存取,又能防止用户之间的不正常交互作用。
⑹ 故障恢复
由数据库管理系统提供一套方法,可及时发现故障和修复故障,从而防止数据被破坏。数据库系统能尽快恢复数据库系统运行时出现的故障,可能是物理上或是逻辑上的错误。比如对系统的误操作造成的数据错误等。
数据库的数据种类:
数据库通常分为层次式数据库、网络式数据库和关系式数据库三种。而不同的数据库是按不同的数据结构来联系和组织的。
1.数据结构模型
⑴数据结构
所谓数据结构是指数据的组织形式或数据之间的联系。
如果用D表示数据,用R表示数据对象之间存在的关系集合,则将DS=(D,R)称为数据结构。
例如,设有一个电话号码簿,它记录了n个人的名字和相应的电话号码。为了方便地查找某人的电话号码,将人名和号码按字典顺序排列,并在名字的后面跟随着对应的电话号码。这样,若要查找某人的电话号码(假定他的名字的第一个字母是Y),那么只须查找以Y开头的那些名字就可以了。该例中,数据的集合D就是人名和电话号码,它们之间的联系R就是按字典顺序的排列,其相应的数据结构就是DS=(D,R),即一个数组。
⑵数据结构类型
数据结构又分为数据的逻辑结构和数据的物理结构。
数据的逻辑结构是从逻辑的角度(即数据间的联系和组织方式)来观察数据,分析数据,与数据的存储位置无关;数据的物理结构是指数据在计算机中存放的结构,即数据的逻辑结构在计算机中的实现形式,所以物理结构也被称为存储结构。
这里只研究数据的逻辑结构,并将反映和实现数据联系的方法称为数据模型。
比较流行的数据模型有三种,即按图论理论建立的层次结构模型和网状结构模型以及按关系理论建立的关系结构模型。
2.层次、网状和关系数据库系统
⑴层次结构模型
层次结构模型实质上是一种有根结点的定向有序树(在数学中"树"被定义为一个无回的连通图)。下图是一个高等学校的组织结构图。这个组织结构图像一棵树,校部就是树根(称为根结点),各系、专业、教师、学生等为枝点(称为结点),树根与枝点之间的联系称为边,树根与边之比为1:N,即树根只有一个,树枝有N个。
按照层次模型建立的数据库系统称为层次模型数据库系统。IMS(Information Management System)是其典型代表。
⑵网状结构模型
按照网状数据结构建立的数据库系统称为网状数据库系统,其典型代表是DBTG(Database Task Group)。用数学方法可将网状数据结构转化为层次数据结构。
⑶ 关系结构模型
关系式数据结构把一些复杂的数据结构归结为简单的二元关系(即二维表格形式)。例如某单位的职工关系就是一个二元关系。
由关系数据结构组成的数据库系统被称为关系数据库系统。
在关系数据库中,对数据的操作几乎全部建立在一个或多个关系表格上,通过对这些关系表格的分类、合并、连接或选取等运算来实现数据的管理。
dBASEⅡ就是这类数据库管理系统的典型代表。对于一个实际的应用问题(如人事管理问题),有时需要多个关系才能实现。用dBASEⅡ建立起来的一个关系称为一个数据库(或称数据库文件),而把对应多个关系建立起来的多个数据库称为数据库系统。dBASEⅡ的另一个重要功能是通过建立命令文件来实现对数据库的使用和管理,对于一个数据库系统相应的命令序列文件,称为该数据库的应用系统。
因此,可以概括地说,一个关系称为一个数据库,若干个数据库可以构成一个数据库系统。数据库系统可以派生出各种不同类型的辅助文件和建立它的应用系统。
数据库的发展简史:
1 数据库的技术发展
使用计算机后,随着数据处理量的增长,产生了数据管理技术。数据管理技术的发展与计算机硬件(主要是外部存储器)系统软件及计算机应用的范围有着密切的联系。数据管理技术的发展经历了以下四个阶段:人工管理阶段、文件系统阶段、数据库阶段和高级数据库技术阶段 。
2 数据管理的诞生
数据库的历史可以追溯到五十年前,那时的数据管理非常简单。通过大量的分类、比较和表格绘制的机器运行数百万穿孔卡片来进行数据的处理,其运行结果在纸上打印出来或者制成新的穿孔卡片。而数据管理就是对所有这些穿孔卡片进行物理的储存和处理。然而,1950 年雷明顿兰德公司(Remington Rand Inc)的一种叫做Univac I 的计算机推出了一种一秒钟可以输入数百条记录的磁带驱动器,从而引发了数据管理的革命。1956 年IBM生产出第一个磁盘驱动器—— the Model 305 RAMAC。此驱动器有50 个盘片,每个盘片直径是2 英尺,可以储存5MB的数据。使用磁盘最大的好处是可以随机存取数据,而穿孔卡片和磁带只能顺序存取数据。
1951: Univac系统使用磁带和穿孔卡片作为数据存储。
数据库系统的萌芽出现于二十世纪60 年代。当时计算机开始广泛地应用于数据管理,对数据的共享提出了越来越高的要求。传统的文件系统已经不能满足人们的需要,能够统一管理和共享数据的数据库管理系统(DBMS)应运而生。数据模型是数据库系统的核心和基础,各种DBMS软件都是基于某种数据模型的。所以通常也按照数据模型的特点将传统数据库系统分成网状数据库、层次数据库和关系数据库三类。
最早出现的网状DBMS,是美国通用电气公司Bachman等人在1961年开发的IDS(Integrated Data Store)。1964年通用电气公司(General ElectricCo.)的Charles Bachman 成功地开发出世界上第一个网状DBMS也即第一个数据库管理系统——集成数据存储(Integrated Data Store IDS),奠定了网状数据库的基础,并在当时得到了广泛的发行和应用。IDS 具有数据模式和日志的特征,但它只能在GE主机上运行,并且数据库只有一个文件,数据库所有的表必须通过手工编码生成。之后,通用电气公司一个客户——BF Goodrich Chemical 公司最终不得不重写了整个系统,并将重写后的系统命名为集成数据管理系统(IDMS)。
网状数据库模型对于层次和非层次结构的事物都能比较自然的模拟,在关系数据库出现之前网状DBMS要比层次DBMS用得普遍。在数据库发展史上,网状数据库占有重要地位。
层次型DBMS是紧随网络型数据库而出现的,最著名最典型的层次数据库系统是IBM 公司在1968 年开发的IMS(Information Management System),一种适合其主机的层次数据库。这是IBM公司研制的最早的大型数据库系统程序产品。从60年代末产生起,如今已经发展到IMSV6,提供群集、N路数据共享、消息队列共享等先进特性的支持。这个具有30年历史的数据库产品在如今的WWW应用连接、商务智能应用中扮演着新的角色。
1973年Cullinane公司(也就是后来的Cullinet软件公司),开始出售Goodrich公司的IDMS改进版本,并且逐渐成为当时世界上最大的软件公司。
数据库的关系由来:
网状数据库和层次数据库已经很好地解决了数据的集中和共享问题,但是在数据独立性和抽象级别上仍有很大欠缺。用户在对这两种数据库进行存取时,仍然需要明确数据的存储结构,指出存取路径。而后来出现的关系数据库较好地解决了这些问题。
1970年,IBM的研究员E.F.Codd博士在刊物《Communication of the ACM》上发表了一篇名为“A Relational Model of Data for Large Shared Data Banks”的论文,提出了关系模型的概念,奠定了关系模型的理论基础。尽管之前在1968年Childs已经提出了面向集合的模型,然而这篇论文被普遍认为是数据库系统历史上具有划时代意义的里程碑。Codd的心愿是为数据库建立一个优美的数据模型。后来Codd又陆续发表多篇文章,论述了范式理论和衡量关系系统的12条标准,用数学理论奠定了关系数据库的基础。关系模型有严格的数学基础,抽象级别比较高,而且简单清晰,便于理解和使用。但是当时也有人认为关系模型是理想化的数据模型,用来实现DBMS是不现实的,尤其担心关系数据库的性能难以接受,更有人视其为当时正在进行中的网状数据库规范化工作的严重威胁。为了促进对问题的理解,1974年ACM牵头组织了一次研讨会,会上开展了一场分别以Codd和Bachman为首的支持和反对关系数据库两派之间的辩论。这次著名的辩论推动了关系数据库的发展,使其最终成为现代数据库产品的主流。
1969年Edgar F.“Ted” Codd发明了关系数据库。
1970年关系模型建立之后,IBM公司在San Jose实验室增加了更多的研究人员研究这个项目,这个项目就是著名的System R。其目标是论证一个全功能关系DBMS的可行性。该项目结束于1979年,完成了第一个实现SQL的 DBMS。然而IBM对IMS的承诺阻止了System R的投产,一直到1980年System R才作为一个产品正式推向市场。IBM产品化步伐缓慢的三个原因:IBM重视信誉,重视质量,尽量减少故障;IBM是个大公司,官僚体系庞大,IBM内部已经有层次数据库产品,相关人员不积极,甚至反对。
然而同时,1973年加州大学伯克利分校的Michael Stonebraker和Eugene Wong利用System R已发布的信息开始开发自己的关系数据库系统Ingres。他们开发的Ingres项目最后由Oracle公司、Ingres公司以及硅谷的其他厂商所商品化。后来,System R和Ingres系统双双获得ACM的1988年“软件系统奖”。
1976年霍尼韦尔公司(Honeywell)开发了第一个商用关系数据库系统——Multics Relational Data Store。关系型数据库系统以关系代数为坚实的理论基础,经过几十年的发展和实际应用,技术越来越成熟和完善。其代表产品有Oracle、IBM公司的 DB2、微软公司的MS SQL Server以及Informix、ADABAS D等等。
数据库的发展阶段:
数据库发展阶段大致划分为如下的几个阶段:人工管理阶段、文件系统阶段、数据库系统阶段、高级数据库阶段。
人工管理阶段
20世纪50年代中期之前,计算机的软硬件均不完善。硬件存储设备只有磁带、卡片和纸带,软件方面还没有操作系统,当时的计算机主要用于科学计算。这个阶段由于还没有软件系统对数据进行管理,程序员在程序中不仅要规定数据的逻辑结构,还要设计其物理结构,包括存储结构、存取方法、输入输出方式等。当数据的物理组织或存储设备改变时,用户程序就必须重新编制。由于数据的组织面向应用,不同的计算程序之间不能共享数据,使得不同的应用之间存在大量的重复数据,很难维护应用程序之间数据的一致性。
这一阶段的主要特征可归纳为如下几点:
(1)计算机中没有支持数据管理的软件,计算机系统不提供对用户数据的管理功能,应用程序只包含自己要用到的全部数据。用户编制程序,必须全面考虑好相关的数据,包括数据的定义、存储结构以即存取方法等。程序和数据是一个不可分割的整体。数据脱离了程序极具无任何存在的价值,数据无独立性。
(2)数据不能共享。不同的程序均有各自的数据,这些数据对不同的程序通常是不相同的,不可共享;即使不同的程序使用了相同的一组数据,这些数据也不能共享,程序中仍然需要各自加入这组数据,哪个部分都不能省略。基于这种数据的不可共享性,必然导致程序与程序之间存在大量的重复数据,浪费存储空间。
(3)不能单独保存数据。在程序中要规定数据的逻辑结构和物理结构,数据与程序不独立。基于数据与程序是一个整体,数据只为本程序所使用,数据只有与相应的程序一起保存才有价值,否则毫无用处。所以,所有程序的数据不单独保存。数据处理的方式是批处理。
文件系统阶段:
这一阶段的主要标志是计算机中有了专门管理数据库的软件——操作系统(文件管理)。
上世纪50年代中期到60年代中期,由于计算机大容量直接存储设备如硬盘、磁鼓的出现,
推动了软件技术的发展,软件的领域出现了操作系统和高级软件,操作系统中的文件系统是专门管理外存的数据管理软件,操作系统为用户使用文件提供了友好界面。操作系统的出现标志着数据管理步入一个新的阶段。在文件系统阶段,数据以文件为单位存储在外存,且由操作系统统一管理,文件是操作系统管理的重要资源。
文件系统阶段的数据管理具有一下几个特点:
优点
(1)数据以“文件”形式可长期保存在外部存储器的磁盘上。由于计算机的应用转向信息管理,因此对文件要进行大量的查询、修改和插入等操作。
(2)数据的逻辑结构与物理结构有了区别,程序和数据分离,使数据与程序有了一定的独立性,但比较简单。数据的逻辑结构是指呈现在用户面前的数据结构形式。数据的物理结构是指数据在计算机存储设备上的实际存储结构。程度与数据之间具有“设备独立性”,即程序只需用文件名就可与数据打交道,不必关心数据的物理位置。由操作系统的文件系统提供存取方法(读/写)。
(3)文件组织已多样化。有索引文件、链接文件和直接存取文件等。但文件之间相互独立、缺乏联系。数据之间的联系需要通过程序去构造。
(4)数据不再属于某个特定的程序,可以重复使用,即数据面向应用。但是文件结构的设计仍是基于特定的用途,程序基于特定的物理结构和存取方法,因此程度与数据结构之间的依赖关系并未根本改变。
(5)用户的程序与数据可分别存放在外存储器上,各个应用程序可以共享一组数据,实现了以文件为单位的数据共享文件系统。
(6)对数据的操作以记录为单位。这是由于文件中只存储数据,不存储文件记录的结构描述信息。文件的建立、存取、查询、插入、删除、修改等操作,都要用程序来实现。
(7)数据处理方式有批处理,也有联机实时处理。
缺点
文件系统对计算机数据管理能力的提高虽然起了很大的作用,但随着数据管理规模的扩大,数据量急剧增加,文价系统显露出一些缺陷,问题表现在:
(1)数据文件是为了满足特定业务领域某一部门的专门需要而设计,数据和程序相互依赖,数据缺乏足够的独立性。
(2)数据没有集中管理的机制,其安全性和完整性无法保障,数据维护业务仍然由应用程序来承担;
(3)数据的组织仍然是面向程序,数据与程序的依赖性强,数据的逻辑结构不能方便地修改和扩充,数据逻辑结构的每一点微小改变都会影响到应用程序;而且文件之间的缺乏联系,因而它们不能反映现实世界中事物之间的联系,加上操作系统不负责维护文件之间的联系,信息造成每个应用程序都有相对应的文件。如果文件之间有内容上的联系,那也只能由应用程序去处理,有可能同样的数据在多个文件中重复储存。这两者造成了大量的数据冗余。
(4)对现有数据文件不易扩充,不易移植,难以通过增、删数据项来适应新的应用要求。
数据库系统阶段:
20世纪60年代后期,随着计算机在数据管理领域的普遍应用,人们对数据管理技术提出了更高的要求:希望面向企业或部门,以数据为中心组织数据,减少数据的冗余,提供更高的数据共享能力,同时要求程序和数据具有较高的独立性,当数据的逻辑结构改变时,不涉及数据的物理结构,也不影响应用程序,以降低应用程序研制与维护的费用。数据库技术正是在这样一个应用需求的基础上发展起来的。
概括起来,数据库系统阶段的数据管理具有以下几个特点:
(1)采用数据模型表示复杂的数据结构。数据模型不仅描述数据本身的特征,还要描述数据之间的联系,这种联系通过所有存取路径。通过所有存储路径表示自然的数据联系是数据库与传统文件的根本区别。这样,数据不再面向特定的某个或多个应用,而是面对整个应用系统。如面向企业或部门,以数据为中心组织数据,形成综合性的数据库,为各应用共享。
(2)由于面对整个应用系统使得,数据冗余小,易修改、易扩充,实现了数据贡献。不同的应用程序根据处理要求,从数据库中获取需要的数据,这样就减少了数据的重复存储,也便于增加新的数据结构,便于维护数据的一致性。
(3)对数据进行统一管理和控制,提供了数据的安全性、完整性、以及并发控制。
(4)程序和数据有较高的独立性。数据的逻辑结构与物理结构之间的差别可以很大,用户以简单的逻辑结构操作数据而无须考虑数据的物理结构。
(5)具有良好的用户接口,用户可方便地开发和使用数据库。
从文件系统发展到数据库系统,这在信息领域中具有里程碑的意义。在文件系统阶段,人们在信息处理中关注的中心问题是系统功能的设计,因此程序设计占主导地位;而在数据库方式下,数据开始占据了中心位置,数据的结构设计成为信息系统首先关心的问题,而应用程序则以既定的数据结构为基础进行设计。
数据库发展趋势:
随着信息管理内容的不断扩展,出现了丰富多样的数据模型(层次模型,网状模型,关系模型,面向对象模型,半结构化模型等),新技术也层出不穷(数据流,Web数据管理,数据挖掘等)。每隔几年,国际上一些资深的数据库专家就会聚集一堂,探讨数据库研究现状,存在的问题和未来需要关注的新技术焦点。过去已有的几个类似报告包括:1989年Future Directions inDBMS Research-The Laguna BeachParticipants ;1990年DatabaseSystems : Achievements and Opportunities ;1991年W.H. Inmon 发表的《构建数据仓库》;1995年Database。
常见数据库厂商:
1. SQL Server
只能在windows上运行,没有丝毫的开放性,操作系统的系统的稳定对数据库是十分重要的。Windows9X系列产品是偏重于桌面应用,NT server只适合中小型企业。而且windows平台的可靠性,安全性和伸缩性是非常有限的。它不象unix那样久经考验,尤其是在处理大数据库。
2. Oracle
能在所有主流平台上运行(包括 windows)。完全支持所有的工业标准。采用完全开放策略。可以使客户选择最适合的解决方案。对开发商全力支持。
3. Sybase ASE
能在所有主流平台上运行(包括 windows)。 但由于早期Sybase与OS集成度不高,因此VERSION11.9.2以下版本需要较多OS和DB级补丁。在多平台的混合环境中,会有一定问题。
4. DB2
能在所有主流平台上运行(包括windows)。最适于海量数据。DB2在企业级的应用最为广泛,在全球的500家最大的企业中,几乎85%以上用DB2数据库服务器,而国内到97年约占5%。
关于数据挖掘名词解释和数据挖掘名词解释题的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。