python数据结构(python数据结构与算法题库)
本篇文章给大家谈谈python数据结构,以及python数据结构与算法题库对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
python的基本数据结构有哪些?
全国计算机等级考试二级操作题部分采用计算机自动评分方式,其中有的题型采用比照标准答案集进行评分,有的题型用一定的算法对程序的输出结果进行检测来评分。简笑改
一、Python语言的基本语法元素
1、程序的基本语法元素:程序的格式框架、缩进、注释、变量、命名、保留字、数据类型、赋值语句、引用;
2、基本输入输出函数:input()、eval()、print();
3、源程序的书写风格;
4、Python语言的特点。
二、基本数据类型
1、数字类型:整数类型、浮点数类型和复数类型;
2、数字类型的运算:数值运算操作符、数值运算函数;
3、字符串类型及格式化:索引、切片、基本的format()格式化方法;
4、字符升数串类型的操作:字符串操作符、处理函数和处理方法;
5、类型判断和类型间转换。
三、程序控制结构
1、程序的三种控制结构;
2、程序的分支结构:单分支结构、二分支结构、多分支结构;
3、程序的循环结构:拦判遍历循环、无限循环、break和continue循环控制;
4、程序的异常处理:try-except。
一文搞懂python数据类型和结构
每次python从入门到精通都是从头开始看,做这个学习笔记主要是为了让自己可以省去学习数据类型和结构那几章的时间,所以“偷懒”可以促进生产力发展......
分别是: 整数型、浮点型、复数、常量、布尔型、字符串 。其中复数基本不会使用到,可以不用太关注
分别是 列表、字典、集合和元组 ,其中最常见并且工作中经常使用到的就是列表和字段,其他两个不常见。
02、字典
列表之外,字典可能是python中用的也比较多的数据结构了,由于字典的底层应用哈希映射,所以要求字典的所有key必须是不可变元素(可哈希对象),增删改查操作一般都能实现O(1)复杂度,是低复杂度的必备数据结构。
03、集合
集合(set)是一个无序的不重复元素序列。
可以使用大括号 { } 或者 set() 函数创建集合,注意:创建一个空集合必须用 set() 而不是 { },因为 { } 是用来创建一个空字典。
集合操作可能最常见于用于对列表去重搏晌迹,它的最大特性是各元素仅保留1次,底层也是应用了哈希函谨野数,所以在集合中查找元素一般也可实现O(1)复杂度,同时集合的嵌套元素也要求是不可变类型(可哈希对象)
add:在集合中增加一个元素,如果元素已存在,则无实际操作
pop:不接受任何参数,堪称是最神秘的操作,不同于列表基并的从尾端删除、字典的指定键删除,集合的pop操作看似是"随机"删除。但实际上是按照加入集合的先后顺序,删除"最早"加入的元素
除了与列表和字典中类似的增删改操作外,集合还支持数学概念下的集合操作,如交集、并集、差集等。
04、元组
如果说列表、字典和集合都有其各自擅长应用场景的话,那么元组可能是最没有存在感的数据结构:它接口有限、功能单一,而且是不可变类型。一般而言,用元组解决的问题都可以用列表实现。但使用用元组时,更多在于暗示该序列为不可变类型。当然,当元组内嵌套子列表时实际上是可以对嵌套的子列表进行更改操作的。
有问题可以私信我,欢迎交流!
[img]python自带及pandas、numpy数据结构(一)
1.python自带数据结构:序列(如list)、映射(如字典)、集合(set)。
以下只介绍序列中的list:
创建list:
list1 = []
list1 = [1,2,3,4,5,6,7,8,9] #逗号隔开
list2 = [[1,2],[3,4],[5,6],[7,8]] #list2长度(len(list2))为2,list2[0] = [1,2]
liststring = list(“thisisalist”) #只用于创建字符串列表
索引list:
e = list1[0] #下标从零开始,用中括号
分片list:
es = list1[0:3]
es = list1[0:9:2] #步长在第二个冒号后
list拼接(list1.append(obj)、加运算及乘运算):
list长度:
list每个元素乘一个数值:
list2 = numpy.dot(list2,2)
list类似矩阵相乘(每个知歼伏元素对应相乘取和):
list3 = numpy.dot(list1,list1)
#要求相乘的两个list长度相同
list3 = numpy.dot(list2,list22)
#要求numpy.shape(list2)和numpy.shape(list22)满足“左行等于右列”的矩阵相乘条件,相乘结果numpy.shape(list3)满足“左列右行”
2.numpy数据结构:
Array:
产生array:
data=np.array([[1, 9, 6], [2, 8, 5], [3, 7, 4]])
data=np.array(list1)
data1 = np.zeros(5) #data1.shape = (5,),5列
data1 = np.eye(5)
索引array:
datacut = data[0,2] #取第零行第二列,此处是6
切片array:
datacut = data[0:2,2] # array([6, 5])
array长度:
data.shape
data.size
np.shape(data)
np.size(data)
len(data)
array拼接:
#括号内也有一个括号(中括号或者小括搭携号)!
d = np.concatenate((data,data))
d = np.concatenate((data,data),axis = 1) #对应行拼接
array加法:逐个相加
array乘法:
d = data data #逐个相乘
d = np.dot(data,data) #矩阵相乘
d = data 3 #每个元素乘3
d = np.dot(data,3) #每个元素乘3
array矩改冲阵运算:
取逆 : np.linalg.inv(data)
转置:data.T
所有元素求和 : np.sum(data)
生成随机数:np.random.normal(loc=0, scale=10, size=None)
生成标准正态分布随机数组:np.random.normal(size=(4,4))
生成二维随机数组:
np.random.multivariate_normal([0,0],np.eye(2))
生成范围在0到1之间的随机矩阵(M,N):
np.random.randint(0,2,(M,N))
Matrix:
创建matrix:
mat1 = np.mat([[1, 2, 3], [4, 5, 6]])
mat1 = np.mat(list)
mat1 = np.mat(data)
matrix是二维的,所有+,-,*都是矩阵操作。
matrix索引和分列:
mat1[0:2,1]
matrix转置:
np.transpose(mat1)
mat1.transpose()
matrix拼接:
np.concatenate([mat1,mat1])
np.concatenate([mat1,mat1],axis = 1)
numpy数据结构总结:对于numpy中的数据结构的操作方法基本相同:
创建:np.mat(list),np.array(list)
矩阵乘:np.dot(x,y)
转置:x.T or np.transpose(x)
拼接:np.concatenate([x,y],axis = 1)
索引:mat[0:1,4],ary[0:1,4]
3.pandas数据结构:
Series:
创建series:
s = pd.Series([[1,2,3],[4,5,6]],index = [‘a’,‘b’])
索引series:
s1 = s[‘b’]
拼接series:
pd.concat([s1,s1],axis = 1) #也可使用s.append(s)
DataFrame:
创建DaraFrame:
df = pd.DataFrame([[1,2,3],[1,2,3]],index = ['a','b'],columns = ['x','y','z'])
df取某一列:
dfc1 =df.x
dfc1 = df[‘x’]
dfc2 = df.iloc[:,0] #用.iloc方括号里是数字而不是column名!
dfc2 = df.iloc[:,0:3]
df取某一行:
dfr1 = df.iloc[0]
df1 = df.iloc[0:2]
df1 = df[0:2] #这种方法只能用于取一个区间
df取某个值:
dfc2 = df.iloc[0,0]
dfc2 = df.iloc[0:2,0:3]
关于python数据结构和python数据结构与算法题库的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。