mysql数据库调优(mysql数据库优化及sql调优)

本篇文章给大家谈谈mysql数据库调优,以及mysql数据库优化及sql调优对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

《MySQL性能调优与架构设计》epub下载在线阅读,求百度网盘云资源

《MySQL性能调优与架构设计》(简朝阳)电子书网盘下载免费在线阅读

资源链接:

链接:

 提取码:1aeg    

书名:MySQL性能调优与架构设计

作者:简朝阳

豆瓣评分:8.1

出版年份:2009-6

页数:392

内容简介:《MySQL性能调优与架构设计》以 MySQL 数据库的基础及维护为切入点派或,重点介绍了 MySQL 数据库应用系统的拦羡茄性能调优,以及高可用可扩展的架构设计。

全书共分3篇,基础篇介绍了MySQL软件的基础知识、架构组成、存储引擎、安全管理及基本的备份恢复知识。性能简察优化篇从影响 MySQL 数据库应用系统性能的因素开始,针对性地对各个影响因素进行调优分析。如 MySQL Schema 设计的技巧,Query 语句的性能优化方式方法及MySQL Server中SQL层和存储引擎层的优化思路。同时还分析了 MySQL 数据库中主要存储引擎的锁定机制。架构设计篇则主要以设计一个高可用可扩展的分布式企业级数据库集群环境为目标,分析介绍了通过 MySQL 实现这一目标的多种架构方式。主要包括可扩展和高可用两部分内容,可扩展部分包括设计原则、Replication 的利用、数据切分、如何使用 Cache 和 Search,以及 NDB Cluster等内容。高可用则主要包括 Dual Master、DRBD、NDB Cluster,以及系统监控等方面。

本书主要面向有一定的 MySQL 基础或至少有一定SQL语言基础的读者朋友。

[img]

我想将MySQL数据库分为5个阶段进行介绍,请问可以分为哪五个阶段,尽量是不同方面的。谢谢啊。

MySQL的安装及数据库服缓谈码务器的管理(比如启动、关闭、更改密码、建库、建表、字段类型等)

MySQL的SQL语句及常用函数

MySQL的权限管理

MySQL的视图、存储过程及触发器

MySQL数据库配置的优化(索引的正确使用、配侍颤置参扰哪数的调优等)

大致是这些吧,可以适当选择内容、排列前后顺序或者重新组合。

mysql实时流量降不下来

如果您的MySQL实时流量没有降下来,那么可能是由于以下几个原因:1. 您的MySQL数据库服务器的负载过高,可能是由于某告毕些查询语句的执行时间过长,或者是由于某些操作的执行迟友燃时间过长;2. 您的MySQL数据库服务器的码虚硬件资源不足,可能是由于硬件资源不足导致执行某些操作时出现超时;3. 您的MySQL数据库服务器的网络环境不佳,可能是由于网络环境不佳导致MySQL数据库服务器的数据传输速度过慢;4. 您的MySQL数据库服务器的系统设置不当,可能是由于某些系统设置不当导致MySQL数据库服务器的性能不佳。建议您可以根据上述原因,进行相应的排查和调优,以解决您的MySQL实时流量没有降下来的问题。

如何检查MySQL数据库的主从延时?

MySQL数据库主从延时如何去判断呢?本文我们介绍了两种判断方法:1. Seconds_Behind_Master vs 2. mk-heartbeat,接下来我们就分别介绍这些内容。 日常工作中,对于MySQL主从复制检查,一方面我们要保证复制的整体结构是否正常,另一方面需要检查主从数据是否保持一致。对于前者我们可以通过监控复制线程是否工作正常以及主从延时是否在容忍范围内,对于后者则可以通过分别校验主从表中数据的md5码是否一致,来保证数据一致,可以使用Maatkit工具包中的mk-table- checksum工具去检查。 方法1: 通过监控show slave status\G命令输出的Seconds_Behind_Master参数的值来判断,是否有发生主从延时。其值有这么几种: NULL — 表示io_thread或是sql_thread有任何一个发生故障,也就是该线程的Running状态是No,而非Yes。 0 — 该值为零,是我们极为渴望看到的情况,表示主从复制良好,可以认为lag不存在。 正值— 表示主从已经出现延时,数字越大表示从库落后主库越多。 负值— 几乎很少见,我只是听一运缓些资深的DBA说见过,其实,这是一个BUG值,该参数是不支持负值的,也就是不应该出现。 show slave status\G,该命令的输出结果非常丰厚,给我们的监控提供了很多有意义的参数,比如旁烂模:Slave_IO_Running该参数可作为 io_thread的监控项,Yes表示io_thread的和主库连接正常并能实施复制工作,No则说明与主库通讯异常,多数情况是由主从间网络引起的问题;Slave_SQL_Running该参数代表sql_thread是否正常,具体就是语句是否执行通过,常会遇到主键重复或是某个表不存在。下面就说到今天的重点Seconds_Behind_Master,该值作为判断主从延时的指标,那么它又是怎么得到这个历卜值的呢,同时,它为什么又受到很多人的质疑? Seconds_Behind_Master是通过比较sql_thread执行的event的timestamp和 io_thread复制好的event的timestamp(简写为ts)进行比较,而得到的这么一个差值。我们都知道的relay-log和主库的 bin-log里面的内容完全一样,在记录sql语句的同时会被记录上当时的ts,所以比较参考的值来自于binlog,其实主从没有必要与NTP进行同步,也就是说无需保证主从时钟的一致。 你也会发现,其实比较真正是发生在io_thread与sql_thread之间,而io_thread才真正与主库有关联,于是,问题就出来了,当主库I/O负载很大或是网络阻塞,io_thread不能及时复制binlog(没有中断,也在复制),而 sql_thread一直都能跟上io_thread的脚本,这时Seconds_Behind_Master的值是0,也就是我们认为的无延时,但是,实际上不是,你懂得。这也就是为什么大家要批判用这个参数来监控数据库是否发生延时不准的原因,但是这个值并不是总是不准,如果当io_thread与 master网络很好的情况下,那么该值也是很有价值的。 之前,提到Seconds_Behind_Master这个参数会有负值出现,我们已经知道该值是io_thread的最近跟新的ts与sql_thread执行到的ts差值,前者始终是大于后者的,唯一的肯能就是某个event的ts发生了错误,比之前的小了,那么当这种情况发生时,负值出现就成为可能。 方法2: mk-heartbeat,Maatkit万能工具包中的一个工具,被认为可以准确判断复制延时的方法。 mk-heartbeat的实现也是借助timestmp的比较实现的,它首先需要保证主从服务器必须要保持一致,通过与相同的一个NTP server同步时钟。它需要在主库上创建一个heartbeat的表,里面至少有id与ts两个字段,id为server_id,ts就是当前的时间戳 now(),该结构也会被复制到从库上。 表建好以后,会在主库上以后台进程的模式去执行一行更新操作的命令,定期去向表中的插入数据,这个周期默认为1 秒,同时从库也会在后台执行一个监控命令,与主库保持一致的周期去比较,复制过来记录的ts值与主库上的同一条ts值,差值为0表示无延时,差值越大表示延时的秒数越多。 我们都知道复制是异步的ts不肯完全一致,所以该工具允许半秒的差距,在这之内的差异都可忽略认为无延时。这个工具就是通过实打实的复制,巧妙的借用timestamp来检查延时,非常好用! 关于检查MySQL数据库的主从延时的两种方法就介绍到这里了,希望本次的介绍能够对您有所收获!

为什么postgrelsql的性能没有mysql好

一、 PostgreSQL 的稳定性极强, Innodb 等引擎在崩溃、断电之类的灾难场景下抗打击能力有了长足进步,然而很多 MySQL 用户都遇到过Server级的数据库丢失的场景——mysql系统库是MyISAM的,相比之下,PG数据库这方面要好一些。

二、任何系统都有它的性能极限,在高并发读写,负载逼近极限下,PG的性能指标仍可以维持双曲线甚至对数曲线,到顶峰之后不再下降,而 MySQL 明显出现一个波峰后下滑(5.5版本之后,在企业级版本中有个插件可以改善很多,不过需要付费)。

三、PG 多年来在 GIS 领域处于优势地位,因为它有丰富的几何类型,实际上不止几何类型蚂悉,PG有大量字典、数组、bitmap 等数据类型,相比之下mysql就差很多,instagram就是因为PG的空间数据库扩展POSTGIS远远强于MYSQL的my spatial而采用PGSQL的。

四、PG 的“无锁定”特性非常突出,甚至包括 vacuum 这样的整理数据空间的操作,这个和PGSQL的MVCC实现有关系。

五、PG 的可以使用函数和条件索引,这使得PG数据库的调优非常灵活,mysql就没有这个功能,条件索引在web应用中很重要。

六、PG有极其强悍的 SQL 编程能力(9.x 图灵完备,支持递归!),有非常丰富的统计函数和统计语法支持,比如分析函数(ORACLE的叫法,PG里叫window函数),还可以用多种语言来写存储过程,对于R的支持也很好。这一点上MYSQL就差的很远,很多分析功能都不支持,腾讯内部数据存储主要是MYSQL,但是数据分析主要是HADOOP+PGSQL。

七、PG 的有多种集群架构可以选择,plproxy 可以支持语句级的镜像或分片,slony 可以进行字段级的同步设置,standby 可以构建WAL文件级或流式的读写分离集群,同步频率和集群策略调整方便,操作非常简单。

八、一般关系型数据库的字符串有限定长度8k左右,无限长 TEXT 类型的功能受限,只能作为外部大数据访问。而 PG 的 TEXT 类型可以直接访问,SQL语法内置正则表达式,可以索引,还可以全文检索,或使用xml xpath。用PG的话,文档数据库都可以省了。

九,对于WEB应用来说,复制的特性很重要,mysql到现在也是异步复制,pgsql可以做到同步,异步,半同步复制。还有mysql的同步是基于binlog复制,类似oracle golden gate,是基于stream的复制,做到同步很困难,这种方式更加适合异地复制,pgsql的复制基于wal,可以做到同步复制。同时,pgsql还提供stream复制。

十,pgsql对于numa架构的支持比mysql强一些,比MYSQL对于读的性能更好一些,pgsql提交可以完全异步,而mysql的内存表不够实用(因为表锁的原因)

最后说一下我感觉 PG 不如 MySQL 的地方。

第一,MySQL有一些实用的运维支持,如 slow-query.log ,这个pg肯定可以定制樱腊出来,但是如果可以配置使用就更好了。

第二是mysql的innodb引擎,可以充分优化利用系统所有内存,超大内存下PG对内存使用的不那么充分,

第三点,MySQL的复制可以用多级从库,但是在9.2之前,PGSQL不能用从库带从库。

第四点,从测试结果上看,mysql 5.5的性能提升很大,单机性能闷颂乎强于pgsql,5.6应该会强更多.

第五点,对于web应用来说,mysql 5.6 的内置MC API功能很好用,PGSQL差一些。

另外一些:

pgsql和mysql都是背后有商业公司,而且都不是一个公司。大部分开发者,都是拿工资的。

说mysql的执行速度比pgsql快很多是不对的,速度接近,而且很多时候取决于你的配置。

对于存储过程,函数,视图之类的功能,现在两个数据库都可以支持了。

另外多线程架构和多进程架构之间没有绝对的好坏,oracle在unix上是多进程架构,在windows上是多线程架构。

很多pg应用也是24/7的应用,比如skype. 最近几个版本VACUUM基本不影响PGSQL 运行,8.0之后的PGSQL不需要cygwin就可以在windows上运行。

至于说对于事务的支持,mysql和pgsql都没有问题。

读取excel表,每次读取5000条并往数据库插入,往mysql插数据时,每一次花的时间都比上一次多,

(1)提高数据库插入性能中心思想:尽量将数据一次性写耐吵燃入到Data File和减少数据库的checkpoint 操作。这次修改了下面四个配置项:

1)将 innodb_flush_log_at_trx_commit 配置设定为0;按过往经验设定为0,插入速度会有很大提高。

0: Write the log buffer to the log file and flush the log file every second, but do nothing at transaction commit.

1:the log buffer is written out to the log file at each transaction commit and the flush to disk operation is performed on the log file

2:the log buffer is written out to the file at each commit, but the flush to disk operation is not performed on it

2)将 innodb_autoextend_increment 配置由于默认8M 调整到 128M

此配置项作用主要是当tablespace 空间已经满了后,需要MySQL系统需要自动扩展多少空间,每次tablespace 扩展都会让各个SQL 处于等待昌虚状态。增加自动扩展Size可以减少tablespace自动扩展次数。

3)将 innodb_log_buffer_size 配置由于默认1M 调整到 16M

此配置项作用设定innodb 数据库引擎写日志缓存区;将此缓存段增大可以减少数据库写数据文件次数。

4)将 innodb_log_file_size 配置由于默认 8M 调整到 128M

此配置项作用设定innodb 数据库引擎UNDO日志的大小;从而减少数据库checkpoint操作。

经过以上调整,系统插入速度由于原来10分钟几万条提升至1秒1W左右;注:以上参数调整,需要根据不同机器来进行实际调整。特别是 innodb_flush_log_at_trx_commit、innodb_log_buffer_size和 innodb_log_file_size 需要谨慎调整;因为涉及MySQL本身的容灾处理。

(2)提升数据库读取速度,重数据库层面上读取速度提升主要由于几点:简化SQL、加索引和分区; 经过检查程序SQL已经是最简单,查询条件上已经增加索引。我们只能用武器:表分区。

数据库 MySQL分区前准备:在MySQL中,表空间就是存储数据和索引的数据文件。

将S11数据库由于同享tablespace 修改为支持多个tablespace;

将wb_user_info_sina 和 wb_user_info_tx 两个表修改为各自独立表空间;(Sina:1700W数据,2.6G 大数据文件,Tencent 1400W,2.3G大数据文件);

分区操作:

将现有的主键和索引先删除

重现建立id,uid 的联合主键

再以 uid 为键值进行分区。这时候到/var/data/mysql 查看数据文件,可以看到两个大表各自独立表空间已经分割成若干个较少独立分区空间。(这时候若以uid 为检索条件进行查询,并不提升速度;因为键值只是安排数据存储的分区并不会建立分区索引。我非常郁闷这点比Oracle 差得不是一点半点。)

再以 uid 字段上进行建立索引。再次到/var/data/mysql 文件夹查看数据文件,非常郁闷地发现各个分区Size竟然大了。MySQL还是老样子将索引与数据存储在同一个tablespace里面。若能index 与 数据分离能够更加好管理。

经过以上调整,暂时没能体现出碰氏系统读取速度提升;基本都是在 2~3秒完成5K数据更新。

MySQL数据库插入速度调整补充资料:

MySQL 从最开始的时候 1000条/分钟的插入速度调高至 10000条/秒。 相信大家都已经等急了相关介绍,下面我做调优时候的整个过程。提高数据库插入性能中心思想:

1、尽量使数据库一次性写入Data File

2、减少数据库的checkpoint 操作

3、程序上尽量缓冲数据,进行批量式插入与提交

4、减少系统的IO冲突

根据以上四点内容,作为一个业余DBA对MySQL服务进行了下面调整:

修改负责收录记录MySQL服务器配置,提升MySQL整体写速度;具体为下面三个数据库变量值:innodb_autoextend_increment、innodb_log_buffer_size、innodb_log_file_size;此三个变量默认值分别为 5M、8M、8M,根据服务器内存大小与具体使用情况,将此三只分别修改为:128M、16M、128M。同时,也将原来2个 Log File 变更为 8 个Log File。此次修改主要满足第一和第二点,如:增加innodb_autoextend_increment就是为了避免由于频繁自动扩展Data File而导致 MySQL 的checkpoint 操作;

将大表转变为独立表空并且进行分区,然后将不同分区下挂在多个不同硬盘阵列中。

完成了以上修改操作后;我看到下面幸福结果:

获取测试结果:

Query OK, 2500000 rows affected (4 min 4.85 sec)

Records: 2500000 Duplicates: 0 Warnings: 0

Query OK, 2500000 rows affected (4 min 58.89 sec)

Records: 2500000 Duplicates: 0 Warnings: 0

Query OK, 2500000 rows affected (5 min 25.91 sec)

Records: 2500000 Duplicates: 0 Warnings: 0

Query OK, 2500000 rows affected (5 min 22.32 sec)

Records: 2500000 Duplicates: 0 Warnings: 0

最后表的数据量:

+------------+

| count(*) |

+------------+

| 10000000|

+------------+

从上面结果来看,数据量增加会对插入性能有一定影响。不过,整体速度还是非常面议。一天不到时间,就可以完成4亿数据正常处理。预计数据库瓶颈已经被巧妙解决,结果变成程序“猿”苦逼地向我埋怨,大哥不用这么狠啊。

关于mysql数据库调优和mysql数据库优化及sql调优的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

标签列表