kafkastream(kafkastream和flink的比较)

本篇文章给大家谈谈kafkastream,以及kafkastream和flink的比较对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

kafkastream flatmap 和map的区别

Stream是元素的集合,这点让Stream看起来用些类似Iterator;

可以支持顺序和并行的对原Stream进行汇聚的操作;

大家可姿者渗以把Stream当成一个高级版本的Iterator。原始版本的Iterator,用户只能一个一个的遍历元素并对其执行某些操作;高级版本的Stream,用户只要给出需要对其包含的元素执行什么操作,比如“过滤掉长度大于10的字符串”、“获取迹脊每个字符串的首字母”等,具体这些操作如何应用到每个元素上,就给Stream就好了!(这个秘籍,一般人我不告诉他:))大家看完这些可能对Stream还没有一个直观的认识,莫急,咱们来段代码。

//Lists是Guava中的一个工具类

ListInteger nums = Lists.newArrayList(1,null,3,4,null,6);

nums.stream().filter(num - num != null).count();

上面这段代码是获取一个List中,元素不为null的个数。这段代码虽然很简短,但是却是一个很好的入门级别的例子来体现如何使用Stream,正所谓“麻雀虽小五脏俱全嫌闹”。我们现在开始深入解刨这个例子,完成以后你可能可以基本掌握Stream的用法!

[img]

kafka获取数据的几种方式

一、基于Receiver的方式

这种方式使用Receiver来获取数据。Receiver是使用Kafka的高层次Consumer API来实现的。receiver从Kafka中获取的数据都是存储在烂厅Spark Executor的内存中的,然后Spark Streaming启动的job会去处理那些数据。

然而,在默认的配置下,这种方式可能会因为底层的失败而丢失数据。如果要启用高可靠机制,让数据零丢失,就必须启用Spark Streaming的预写日志机制(Write Ahead Log,WAL)。该机制会同步地将接收到的Kafka数据写入分布式文件系统(比如HDFS)上的预写日志中。所以,即使底层节点出现了失败,也可以使用预写日志中的数据进行恢复。

如何进行Kafka数据源连接

1、在maven添加依赖

dependency groupIdorg.apache.spark/groupId artifactIdspark-streaming-kafka_2.10/artifactId version1.4.1/version/dependency

2、scala代码

val kafkaStream = {val sparkStreamingConsumerGroup = "spark-streaming-consumer-group"val kafkaParams = Map("zookeeper.connect" - "zookeeper1:2181","group.id" - "spark-streaming-test","zookeeper.connection.timeout.ms" - "1000")val inputTopic = "input-topic"val numPartitionsOfInputTopic = 5val streams = (1 to numPartitionsOfInputTopic) map { _ =KafkaUtils.createStream(ssc, kafkaParams, Map(inputTopic - 1), StorageLevel.MEMORY_ONLY_SER).map(_._2)}val unifiedStream = ssc.union(streams)val sparkProcessingParallelism = 1 // You'd probably pick a higher value than 1 in production.unifiedStream.repartition(sparkProcessingParallelism)}

需要注意的要点

1、Kafka中的topic的partition,与Spark中的RDD的partition是没有关系的。所以,在KafkaUtils.createStream()中,提高partition的数量,只会增加一个Receiver中,读取partition的线程的数量。不会增加Spark处理数据的并行度。

2、可以创建多个Kafka输入DStream,使用不同的consumer group和topic,来通过多个receiver并行接收数据。

3、如果基于容错的文件系统,比如HDFS,启用了预写日志机制,接收到的数据都会被复制一份到预写日志中。因此,在KafkaUtils.createStream()中,设置的持久化级别是StorageLevel.MEMORY_AND_DISK_SER。

二、基于Direct的方式

这种新的不基于Receiver的直接方式,是在Spark 1.3中引入的,从而能够确保更加健壮的机制。替代掉使用Receiver来接收数据后,这种方式会周期性地查询Kafka,来获得每个topic+partition的最新的offset,从答档而定义每个batch的offset的范围。当处理数据的job启动时,就会使用Kafka的简单清历乱consumer api来获取Kafka指定offset范围的数据。

这种方式有如下优点:

1、简化并行读取:如果要读取多个partition,不需要创建多个输入DStream然后对它们进行union操作。Spark会创建跟Kafka partition一样多的RDD partition,并且会并行从Kafka中读取数据。所以在Kafka partition和RDD partition之间,有一个一对一的映射关系。

2、高性能:如果要保证零数据丢失,在基于receiver的方式中,需要开启WAL机制。这种方式其实效率低下,因为数据实际上被复制了两份,Kafka自己本身就有高可靠的机制,会对数据复制一份,而这里又会复制一份到WAL中。而基于direct的方式,不依赖Receiver,不需要开启WAL机制,只要Kafka中作了数据的复制,那么就可以通过Kafka的副本进行恢复。

3、一次且仅一次的事务机制:

基于receiver的方式,是使用Kafka的高阶API来在ZooKeeper中保存消费过的offset的。这是消费Kafka数据的传统方式。这种方式配合着WAL机制可以保证数据零丢失的高可靠性,但是却无法保证数据被处理一次且仅一次,可能会处理两次。因为Spark和ZooKeeper之间可能是不同步的。

基于direct的方式,使用kafka的简单api,Spark Streaming自己就负责追踪消费的offset,并保存在checkpoint中。Spark自己一定是同步的,因此可以保证数据是消费一次且仅消费一次。

scala连接代码

val topics = Set("teststreaming")val brokers = "bdc46.hexun.com:9092,bdc53.hexun.com:9092,bdc54.hexun.com:9092" val kafkaParams = Map[String, String]("metadata.broker.list" - brokers, "serializer.class" - "kafka.serializer.StringEncoder")// Create a direct stream val kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics)val events = kafkaStream.flatMap(line = {Some(line.toString())})

三、总结:两种方式在生产中都有广泛的应用,新api的Direct应该是以后的首选方式。

如何确定Kafka的分区数,key和consumer线程数

分区实际上是举拿调优Kafka并行度的最小单元。 对于producer而言,它实际上是用多个线程并发地向不同分区所在的broker发起Socket连接同时给这些分区发歼答行送消息;

而consumer呢,同一个消费组内的所有consumer线程都被指定topic的某一个分区进行消费(具体如何确定consumer线程数目我们后面会详细说氏哗明)。 所以说,如果一个topic分区越多,理论上整个集群所能达到的吞吐量就越大。

关于kafkastream和kafkastream和flink的比较的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

标签列表