hbase(hbase创建表)

本篇文章给大家谈谈hbase,以及hbase创建表对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

hbase的核心数据结构

hbase的核心数据结构如下:

Hadoop是大数据开发的重要框架,其核心是HDFS和MapReduce,HDFS为海量的数据提供了存陪备段储,MapReduce为海量的数据提供了计算,因此,需要重点掌握,除此之外,还需要掌握Hadoop集群、Hadoop集群管理、YARN以及Hadoop高级管理等相关技术与操作!

其他数据结构:

1、Java编程技术

Java编程技术是大数据学习的基础,Java是一种强类型语言,拥有极高的跨平台滚租能力,可以编写桌面应用程序、Web应用程序、分布式系统和嵌入式系统应用程序等,是大数据工程师最喜欢的编程工具,因此,想学好大数据,掌握Java基础是必不可少的!

2、Linux命令

对于大数据开发通常是在Linux环境下进行的,相比Linux操作系统,Windows操作系统是封闭的操作系统,开源的大数据软件很受限制,因此,想从事大数据开发相关工作,还需掌握Linux基础操作命令芦誉。

[img]

hbase是什么意思

hbase的意思如下:

HBase是一个分布式的、面向列的开源数据库,该技术来源于 Fay Chang 所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”。

就败禅像Bigtable利用了Google文件系统(File System)所提供的分布式数据存储一样,HBase在Hadoop之上提供了类似于Bigtable的能力。

HBase是Apache的Hadoop项目的子项目。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。

结构介绍:

HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储搭亮系统,利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群。

与FUJITSU Cliq等商用大数据产品不同,HBase是Google Bigtable的开源实现,类似Google Bigtable利用GFS作为其文件存储系统,HBase利用Hadoop HDFS作为其文件存储系统;

Google运行MapReduce来处理Bigtable中的海量数据,HBase同样利用Hadoop MapReduce来处理HBase中的海量数据;Google Bigtable利用 Chubby作为协同服务,HBase利用Zookeeper作为对应。

上图描述Hadoop EcoSystem中的各层系统。其中,HBase位于结构化存储层,Hadoop HDFS为HBase提供了高可靠性的底层存储支持,Hadoop MapReduce为HBase提供了高性能的计算能力,Zookeeper为HBase提供了稳定服务和failover机制。

此外,Pig和Hive还为HBase提供了高层语言支持,使察枝尘得在HBase上进行数据统计处理变的非常简单。 Sqoop则为HBase提供了方便的RDBMS数据导入功能,使得传统数据库数据向HBase中迁移变的非常方便。

HBase是什么呢,都有哪些特点呢?

Hbase是一种NoSQL数据库,这意味着它不像传统的RDBMS数据库那样支持SQL作为查询语言。Hbase是一种分布式存储的数据库,技术上来讲,它更像是分布式存储而不是分布式数据库,它缺少很多RDBMS系统的特性,比如列类型,辅助索引,触发器,和高级查询语言等待

那Hbase有什么特性呢?如下:

强读写一致,但是不是“最终一致性”的数据存储,这使得它非常适合高速的计算聚合

自动分片,通过Region分散在集群中,当行数增长的时候,Region也会自动的切分和再分配

自动的故障转移

Hadoop/HDFS集成,和HDFS开箱即用,不用太麻烦的衔接

丰富的“简洁,高没祥旁效”API,Thrift/REST API,Java API

块缓存,布隆过滤器,可以高效的列查询优化

操作管理,Hbase提供了内置的web界面来操作,还可以监控JMX指标

什么时候用Hbase?

Hbase不适合解决所有的问题:

首先数据库量要足够多,如果有十亿及百亿行数据,那么Hbase是一个很好的选项,如果只有几百万行甚至不到的数据量,RDBMS是一个很好的选择。因为数据量小的话,真正能工作的机器量少,剩余的机器都处于空闲的状态

其次,如果你不需要辅助索引,静态类型的列,事务等特性,一个已经用RDBMS的系统想要切换到Hbase,则需要重新设计系统。

最后,保证硬件资源足够,每个HDFS集群在少于5个节点的时候,都不能表现的很好。因为HDFS默认的复制数量是3,再加上一个NameNode。

Hbase在单机环境也能运行,但是请在开发环境的时候使用。

内部应用

存储业务数据:车辆GPS信息,司机点位信息,用户操作信息,设备访问信息。。。

存储日志数据:架构监控数据(登录日志,中间件访问日志,推送日志,短信邮件发送记录。。。),业务操作日志信息

存枯橡储业务附件:UDFS系统存储图像,视频,文档等附件信息

不过在公司使用的时候,一般不使用原生的Hbase API,使用原生的API会导致访问不可监控,影响系统稳定性,以致于版本升级的不可控。

HFile

HFile是Hbase在HDFS中存储数据的格式,它包含多层的索引,这样在Hbase检索数宴世据的时候就不用完全的加载整个文件。索引的大小(keys的大小,数据量的大小)影响block的大小,在大数据集的情况下,block的大小设置为每个RegionServer 1GB也是常见的。

探讨数据库的数据存储方式,其实就是探讨数据如何在磁盘上进行有效的组织。因为我们通常以如何高效读取和消费数据为目的,而不是数据存储本身。

Hfile生成方式

起初,HFile中并没有任何Block,数据还存在于MemStore中。

Flush发生时,创建HFile Writer,第一个空的Data Block出现,初始化后的Data Block中为Header部分预留了空间,Header部分用来存放一个Data Block的元数据信息。

而后,位于MemStore中的KeyValues被一个个append到位于内存中的第一个Data Block中:

注:如果配置了Data Block Encoding,则会在Append KeyValue的时候进行同步编码,编码后的数据不再是单纯的KeyValue模式。Data Block Encoding是HBase为了降低KeyValue结构性膨胀而提供的内部编码机制。

hbase的作用

HBase 是典型的 NoSQL 数据库,通常被描述成稀疏的、分布式的、持久化的,由行键、列键和时间戳进行索引的多维有序映射数据库,主要用来存储非结构化和半结构化的数据。因为 HBase 基于 Hadoop 的 HDFS 完成分布式存储,以及 MapReduce 完成分布式并行计算,所以它的一些特点与 Hadoop 相同,依靠横向扩展,通过不断增加性价比高的商业服务器来增加计算和存储能力。

HBase 虽然基于 Bigtable 的开源实现,但它们之间还是有很多差别的李慧伏,Bigtable 经常被描述成键值数据库,而 HBase 则是面向列存储的分布式数据库。

下面介绍 HBase 具备的显著特性,这些特性让 HBase 成为当前和未来最实用的数据库之一。

容量巨大

HBase 的单表可以有百亿行、百万列,可以在横向和纵向两个维度插入数据,具有很大的弹性。

当关系型数据库的单个表的记录在亿级时,查询和写入的性能都会呈现指数级下降,这种庞大的数据量对传统数据库来说是一种灾难,而 HBase 在限定某个列的情况下对于单表存储百亿甚至更多的数据都没有性能问题。

HBase 采用 LSM 树作为内部数据存储结构,这种结构会周期性地将较小文件合并成大文件,以减少对磁盘的访问。

扩展性强

HBase 工作在 HDFS 之上,理所当然地支持分布式表,也继承了 HDFS 的可扩展性。HBase 的扩展是横向的,横向扩展是指在扩展时不需要提升服务器本身的性能,只需添加服务器到现有集群碧毁即可。

HBase 表根据 Region 大小进行分区,分别存在集群中不同的节点上,当添加新的节点时,集群就重新调整,在新哪携的节点启动 HBase 服务器,动态地实现扩展。这里需要指出,HBase 的扩展是热扩展,即在不停止现有服务的前提下,可以随时添加或者减少节点。

高可靠性

HBase 运行在 HDFS 上,HDFS 的多副本存储可以让它在岀现故障时自动恢复,同时 HBase 内部也提供 WAL 和 Replication 机制。

WAL(Write-Ahead-Log)预写日志是在 HBase 服务器处理数据插入和删除的过程中用来记录操作内容的日志,保证了数据写入时不会因集群异常而导致写入数据的丢失;而 Replication 机制是基于日志操作来做数据同步的。

关于hbase和hbase创建表的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

标签列表