数据结构树(数据结构树的应用实例)

本篇文章给大家谈谈数据结构树,以及数据结构树的应用实例对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

【数据结构】树的定义和树的三种存储结构

树(Tree)是n(n=0)个结点的有限集。n=0时称为空树。在任意一颗非空树中:

假设以一组连续空间存储数的结点,同时在每个结点中, 附设一个指示器指示其双亲结点到链表中的位置 。

把每个结点的孩子结点排列起来孙让,以 单链表作为存储结构 ,则n个结点有n个孩子链表,如果是叶子结点则此单链表为空。然后 n个头指针又组成一个线性表,采用顺序存储结构 ,存放进一个一维数组中。

孩子表示法有两种结点结构: 孩子链表的孩子结点 和 表头数组的表头结点

对于孩子表示法,查找某个旦雹结点的某个孩子,或者找某个结点的兄弟,只需要查找这个结点的孩子单链表即可。但是 当要寻找某个结点的双亲时 ,就不是那么方便了。所以可以将双亲表示法和孩子表示法结合,形成 双亲孩子表示法 。

任意一棵树,它的结点的第一个孩子如果则迟局存在就是唯一的,它的右兄弟存在也是唯一的。因此,设置两个指针,分别指向该结点的第一个孩子和此结点的右兄弟。

[img]

数据结构--树和森林

一、 树的定义:

树(tree)是n(n0)个节点的有限集,在任意一棵树中,(1)有且仅有一个特定的称为根(root)的节点,(2)当n1时,其余节点可分为m(m0)个互不相交的有限集,而每个集合毕塌枯本身又是一棵树,称为根的子树(subtree)。

从上面树的定义中可以看到,这是一个递衫野归的定义,即树的定义中又用到了树的概念。

树具有下面两个特点:

(1) 树的根结点没有前驱结点,除根结点外的其他结点有且只有一个前驱结点

(2) 树中所有结点可以有0个或多个后继结点

根据这两个特点,可以看出下图表示的都不是树。

森林(forest)是m(m≥0)棵互不相交的树的集合。任何一棵树,删除了根结点就变成了森林。

二、 树的存储结构

1、 双亲表示法

树中每个结点都有唯一一个双亲结点,根据这一特性,可以用一组连续的存储空间(一维数组)存储树中的各个结点,数组中每个元素都表示树中的一个结点,数组元素为结构体类型,这个结构体类型由结点本身的数据和结点的双亲在数组中的序号组成。

树的双亲表示法对于寻找双亲和根的操作很方便,但是手洞要求某结点的孩子结点,就需要遍历整个数组,而且也不能反映各兄弟之间的关系,因此找到某结点的兄弟也很困难。

2、 孩子表示法

按如下图所示的形式存储。主体是一个与结点个数一样大小的一维数组,数组的每个元素有两个域,一个域用于存放结点数据,另一个用于存放指针,该指针指向由该结点孩子组成的单链表的首位置。单链表的结构也由两个域组成,一个存放孩子结点在一维数组中的序号,另一个为指针域,指向下一个孩子。

孩子表示法中查找双亲很困难,适用于查找孩子的操作。

3、 双亲孩子表示法

双亲孩子表示法是将双亲表示法和孩子表示法结合起来的方法。如下图所示,将各节点的孩子结点组成单链表,用一维数组顺序存储树的结点,数组元素包括结点本身的数据,该结点的孩子结点链表的头指针,存储该结点的双亲在数组中的序号。

4、 孩子兄弟表示法

这种方法的结构体包含:每个结点的数据,指向该结点的第一个孩子结点的指针和指向下一个兄弟结点的指针。

三、 树转换为二叉树

第一步:在树中所有兄弟结点间加一条连线

第四步:调整位置

五、 二叉树转换为树、森林

七、 森林的遍历

森林的遍历分为两种:前序遍历和中序遍历

1、 前序遍历

A. 访问森林中第一棵树的根节点

B. 前序遍历第一棵树的根节点的子树

C. 前序遍历去掉第一棵树后剩余的森林

上图按照前序遍历,结果为:A B C D E F G H J I K

2、 中序遍历

A. 中序遍历第一棵树的根节点的子树

B. 访问森林中第一棵树的根结点

C. 中序遍历去掉第一棵树剩余的森林

上图按照中序遍历,结果为:B A D E F C J H K I G

数据结构之树

树是n(n=0)个结点的有限集。n=0是代表是一棵空树;

1、有且仅有一个根节点;

2、当n1时,其余结点又可以再分为m个有限集,并且分出来的每个有限集本身也是一棵树,称作根的子树。

1、树是一种递归的数据结构;

2、树也是一种分层的结构;

3、除了树的根结点外,其余结点都有且仅有一个前驱结点;

4、树中的所有结点可以有零个或多个后继结点;

树中一个结点的孩子结点个数的和称为度;

树中结点的最大度数称为树的度,即该树是几度树,如果树中结点的最大度数为m,则称该树为m度树;

度为m的树,指的是某棵树中最大度数为m,即其不能为空树,最少要有m+1个结点;

m叉树,指的树中不存在度大于m的树,即可以小于m甚至没有,即其可以为空树,或者退化为链表;

度大于零则称为分支结点,度为零的则称为叶子结点;

层数:是从上往下数的,即树根为第一层,以此类推;

高度:是从下往上数的,即最下面的叶子结点高度为1,以此类推;

深度:也是从上往下的一个概念;

森林是多棵互不相交的树组成的集合,加上一个根结点可变为树,故树与森林和相互转化;

设树的结点数为n,度为m,高度为h,树的总度树为k(总度树其实就是边的个数,因为一个度对应一条边),则有如下性质;

1、n -1 = k(树的结点数减一等于该树的总度数),因为除根外每个结点都只有唯一一个前驱即只有一个边,于是n个结点有n个边根结点没有所以排除;

2、度为m的树中,第i层最多有m^(i-1)个结点;

3、高度为h的m叉树至多有(m^h - 1)/(m -1)个结点,计算方式就是根据2等比数列求和;

4、高度指辩为h的度为m的树至少有h+m-1个结点;

5、有n个结点的m叉树的最小高度为[logm(n(m-1)+1)],根据3取对数可得;

这种存储方式是使用顺序存储的结构,在结唯皮缺点中又增加了一个用于存储父结点的指针,即父结点在数组中的位置,根结点在数组中的位置为0,其父结点值设置为-1;

这种存储方式的优点是查询结点的双亲很方便;

缺点正好相反,查找孩子结点就比较麻烦需要遍历这个数组;

这种存储方法是把顺序表和链表结合在一起的存储方法,这种存储的思想也很重要;

这种存储方式是,用数组顺序存储各个节点,每个结点中又多加一个用于存储孩子结点链表头的指针,即将各孩子在数据存储的位置用链表串起来;

这种方式方便寻找孩子结点,但是需要父结点时需要遍历数组;

这种存储方法又称为二叉树表示法,是用链表表示的存储方法;

该存储方法包含三个字段即,结点值、指向第一个孩子结点的指针(左孩子)、右指针握谨指向兄弟结点;

这种存储方法最大的优势就是,将我们不太熟悉的树结构,转化为熟悉的二叉树结构;

而且查询孩子结点是很方便的,缺点是不容易查找其父结点;

数据结构--树

          树是由结点或顶点和边组成的(可能是非线性的)且不存在着任何环的一种数据结构。没有结点的树称为空(null或empty)树。一棵非空的树包括一个根结点,还(很可能)有多个附加结点,所有结点构成一个多级分层结构。

树的特点: ①每个节点有零个或多个子节②没有父节点的节点称为根节点;   ③每一个非根节点有且只有一个父节点;   ④除了根节点外,每个子节点可以分为多个不相交的子树;

树结构的名词解释如下:

1、节点:树中的一个独立单元,包含一个数据元素及诺干个指向其他子树的分支。例如,A、B、C等都是节点。

2、节点的度:节点拥有的子树数称为节点的度,例如A的度是3,C的度为0,B的度为3.

3、树的度:树的度是树内各个节点度的最大值,例如,上图中的度为3.

4、叶子:度为0 度节点称为叶子或者终端节点,例如:E、F、K、L、M、H、I、J都是叶子节点。

5、非终端节点:度不档念简为0的节点或者分支节点,除根节点以外的非终端节点也称为内部节点。

6、双亲和孩子:节点的子树的根称为该节点的孩子,相应的该节点称为孩子的双亲,例如:B的双亲是A,B的孩子有E、F、G

7 、兄弟:同一个双亲的孩子节点称为兄弟节点,例如:B、C、D互为兄弟。

8、树的层次:节点的层次从根开始定义起,根为第一层,根的孩子为第二层,树中任何一层次等于双亲节点的层次加1.

9、有序树和无序树: 如果将树的节点的各子树看成从左到右是有序的(即不能互换)则称为该树为有高搭序树;否则是无序树,在有序树中最左边的子树的根称为第一个孩子,最右边的称为最后一个孩子。

10、节点的高度:节点到叶子节点的最长路径(边数)。

11、节点的深度:根节点到这个节点所经历的边的个数。

12、节点的层数: 节点的深度-1。

13、数的高度:根节点的高度。

定义:二叉树 是n(n=0)个结点的有限集合,该集合或者为空集(称为空二叉树),或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树组成。

由二叉树定义以及图示分析得出二叉树有以下特点:

1)每个结点最多有两颗子树,所以二叉树中不存在度大于2的结点。

2)左子树和右子树是有顺序的,次序不能任意颠倒。

3)即使树中某结点只有一棵子树,也要区分它是左子树还是右子树。

1)在二叉树的第i层上最多有2i-1个节点 。(i=1)

2)二叉树中如果深度为k,那么最多有2k-1个节点。(k=1)

3)n0=n2+1  n0表示度数为0的节点数,n2表示度数为2的节点数。

4)在完全二叉树中,具有n个节点的完全二叉树的深度为[log2n]+1,其中[log2n]是向下取整。

5)若对含 n 个结点的完全二叉树从上到下且从左至右进行 1 至 n 的编号,则对完全二叉树中任意一个编号为 i 的结点有如下特性:

  a. 若 i=1,则该结点是二叉树的根,无双亲, 否则,编号为 [i/2] 的结点为其双亲结点;b. 若 2in,则该结点无左孩子,  否则,编号为 2i 的结点为其左孩子结点;c. 若 2i+1n,则该结点无右孩子结点,  否则,编号为2i+1 的结点为其右孩子结点。

1、 斜树 :所有的结点都只有左子树的二叉树叫左斜树。所有结点都是只有右子树的二叉树叫右斜树。这两者统称为斜树。

2、 满二叉树 :在行裤一棵二叉树中。如果所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上,这样的二叉树称为满二叉树。

3、 完全二叉树 :对一颗具有n个结点的二叉树按层编号,如果编号为i(1=i=n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同,则这棵二叉树称为完全二叉树。

1顺序存储:(数组)

2链式存储:(链表)

二叉树的遍历 是指从二叉树的根结点出发,按照某种次序依次访问二叉树中的所有结点,使得每个结点被访问一次,且仅被访问一次。

1.前序遍历: 通俗的说就是从二叉树的根结点出发,当第一次到达结点时就输出结点数据,按照 先向左在向右 的方向访问。

输出结果为: ABDHIEJCFG

2.中序遍历: 从二叉树的根结点出发,当第二次到达结点时就输出结点数据,按照先向左在向右的方向访问。

输出结果为: HDIBJEAFCG

3.后序遍历 :从二叉树的根结点出发,当第三次到达结点时就输出结点数据,按照先向左在向右的方向访问。

输出结果为: HIDJEBFGCA

4层序遍历: 按照树的层次自上而下的遍历二叉树。

输出结果为: ABCDEFGHIJ

算法的实现转下一篇。 二叉树的遍历

数据结构—树的详解

树是非线性存储结构,存储的是具有“一对多”关系的数据元素的集合。

使用树结构存储的集合 {A,B,C,D,E,F,G,H,I,J,K,L,M} 的示意图。对于数据 A 来说,和数据 B、C、D 有关系;对于数据 B 来说,和 E、F 有关系。这就是“一对多”的关系。

将具有“一对多”关系的集合中的数据元素按照图中的形式进行存储,整个存储形状在逻辑结构上看,类似于实际生活中倒着的树,所以称这种存储结构为“树型”存储结构。

使用树结构存储的每一个数据元素都被称为“结点”。例如,图 1中,数据元素 A 就是一个结点;

对于图 1中的结点 A、B、C、D 来说,A 是 B、C、D 结点的父结点(也称为“双亲结点”),而 B、C、裤伏顷D 都是 A 结点的子结点(也称“孩子结点”)。对于 B、C、D 来说,它们都有相同的父结点,所以它们互为兄弟结点。

每一个非空树都有且只有一个被称为根的结点。图 1中,结点A就是整棵树的根结点。

树根的判断依据为:如果一个结点没有父结点,那么这个结点就是整棵树的根结点。

如果结点没有任何子结点,那么此结点称为叶子结点(叶结点)。例如图 1中,结点 K、L、F、G、M、I、J 都是这棵树的叶子结点。

如图 1中,整棵树的根结点为结点 A,而胡陆如果单看结点 B、E、F、K、L 组成的部分来说,也是棵树,而且节点 B 为这棵树的根结点。所以称 B、E、F、K、L 这几个结点组成的树为整棵树的子树;同样,结点 E、K、L 构成的也是一棵子树,根结点为 E。

注意:单个结点也是一棵树,只不过根结点就是它本身。图 1中,结点 K、L、F 等都是树,且都是整棵树的子树。

知道了子树的概念后,树也可以这样定义:树是由根结点和若干棵子树构成的。

如果集合本身为空,那么构成的树就被称为空树。

空树中没有结点。

补充:在树结构中,对于具有同一个根结点的各个子树,相互之间不能有交集。例如,图 1中,除了根结点 A,其余元素又各自构成了三个子树,根结点分别为 B、C、D,这三个子树相互之间没有相同的结点。如果有,就破坏了树的结构,不能算做是一棵树。结点的度和层次

对于一个结点,拥有的子树数(结点有多少分支)称为结点的度(Degree)。例如,图 1中,根结点 A 下分出了 3 个子树,所以,结点 A 的度为 3。

一棵树的度是树内各结点的度的最大值。图 1表示的树中,各个结点的度的最大值为 3,所以,整棵树的度的值是 3。

从一棵树的树根开始,树根所在层为第一层,根的孩子结点所在的层为第二层,依次类推。对于图 1来说,A 结点在第一层,B、C、D 为第二层,E、F、G、H、I、J 在第三层,K、L、M 在第四层。

一棵树的深度(高度)是树中结点所在的最大的层次。图 1树的深度为 4。

如果两个结点的父结点虽不相同,但是它们的父结点处在同一层次上,那么这两个结点互为堂兄弟。例如,图 1中,结点 G 和 E、F、H、I、J 的父结点都在第二层,所以之间为堂兄弟的关系。

如果树中结点的子树从左到右看,谁在左边,谁在右边,是有规定的,这棵树称为有序树;反之称为无序树。

在有序树中,一个结点最左边的子树称为"第一个孩子",最右边的称为"最后一个孩子"。

图 1来说,如果是其本身是一棵有序树,则以结点 B 为根结点的子树为整棵树的第一个孩子,以结点 D 为根结点的子树为整棵树的最后一个孩子。

由 m(m = 0)个互不相交的树组成的集合被称为森林。图 1中,分别厅世以 B、C、D 为根结点的三棵子树就可以称为森林。

树可以理解为是由根结点和若干子树构成的,而这若干子树本身是一个森林,所以,树还可以理解为是由根结点和森林组成的。用一个式子表示为:

Tree =(root,F),其中,root 表示树的根结点,F 表示由 m(m = 0)棵树组成的森林。

数据结构中为了存储和查找的方便,用各种树结构来存储文件,我们首先介绍下基本的树的种类:二叉查找树(二叉排序树)、平衡二叉树(AVL树)、红黑树、B-树、B+树、字典树(trie树)、后缀树、广义后缀树。

二叉查找树是一种动态查找表,具有这些性质:

(1)若它的左子树不为空,则左子树上的所有节点的值都小于它的根节点的值;

(2)若它的右子树不为空,则右子树上所有节点的值都大于它的根节点的值;

(3)其他的左右子树也分别为二叉查找树;

(4)二叉查找树是动态查找表,在查找的过程中可见添加和删除相应的元素,在这些操作中需要保持二叉查找树的以上性质。

含有相同节点的二叉查找树可以有不同的形态,而二叉查找树的平均查找长度与树的深度有关,所以需要找出一个查找平均长度最小的一棵,那就是平衡二叉树,具有以下性质:

(1)要么是棵空树,要么其根节点左右子树的深度之差的绝对值不超过1;

(2)其左右子树也都是平衡二叉树;

(3)二叉树节点的平衡因子定义为该节点的左子树的深度减去右子树的深度。则平衡二叉树的所有节点的平衡因子只可能是-1,0,1。

红黑树是一种自平衡二叉树,在平衡二叉树的基础上每个节点又增加了一个颜色的属性,节点的颜色只能是红色或黑色。具有以下性质:

(1)根节点只能是黑色;

(2)红黑树中所有的叶子节点后面再接上左右两个空节点,这样可以保持算法的一致性,而且所有的空节点都是黑色;

(3)其他的节点要么是红色,要么是黑色,红色节点的父节点和左右孩子节点都是黑色,及黑红相间;

(4)在任何一棵子树中,从根节点向下走到空节点的路径上所经过的黑节点的数目相同,从而保证了是一个平衡二叉树。

B-树是一种平衡多路查找树,它在文件系统中很有用。一棵m阶B-树(图为4阶B-树),具有下列性质:

(1)树中每个节点至多有m棵子树;

(2)若根节点不是叶子节点,则至少有2棵子树;

(3)除根节点之外的所有非终端节点至少有 m/2 棵子树;

(4)每个节点中的信息结构为(A0,K1,A1,K2......Kn,An),其中n表示关键字个数,Ki为关键字,Ai为指针;

(5)所有的叶子节点都出现在同一层次上,且不带任何信息,也是为了保持算法的一致性。

B+数是B-树的一种变形,它与B-树的差别在于(图为3阶B+树):

(1)有n棵子树的节点含有n个关键字;

(2)所有的叶子节点包含了全部关键字的信息,及指向这些关键字记录的指针,且叶子节点本身按关键字大小自小到大顺序链接;

(3)所有非终端节点可以看成是索引部分,节点中仅含有其子树(根节点)中最大(或最小)关键字,所有B+树更像一个索引顺序表;

(4)对B+树进行查找运算,一是从最小关键字起进行顺序查找,二是从根节点开始,进行随机查找。

字典树是一种以树形结构保存大量字符串。以便于字符串的统计和查找,经常被搜索引擎系统用于文本词频统计。它的优点是:利用字符串的公共前缀来节约存储空间,最大限度地减少无谓的字符串比较,查询效率比哈希表高。具有以下特点:

(1)根节点为空;

(2)除根节点外,每个节点包含一个字符;

(3)从根节点到某一节点,路径上经过的字符连接起来,为该节点对应的字符串。

(4)每个字符串在建立字典树的过程中都要加上一个区分的结束符,避免某个短字符串正好是某个长字符串的前缀而淹没。

所谓后缀树,就是包含一则字符串所有后缀的压缩了的字典树。先说说后缀的定义。给定一长度为n的字符串S=S 1 S 2 ..S i ..S n ,和整数i,1 = i = n,子串S i S i+1 ...S n 都是字符串S的后缀。以字符串S=XMADAMYX为例,它的长度为8,所以S[1..8], S[2..8], ... , S[8..8]都算S的后缀,我们一般还把空字串也算成后缀。这样,我们一共有如下后缀。对于后缀S[i..n],我们说这项后缀起始于i。

所有这些后缀字符串组成一棵字典树:

上图,我们可以看到不少值得压缩的地方。比如蓝框标注的分支都是独苗,没有必要用单独的节点同边表示。如果我们允许任意一条边里包含多个字母,就可以把这种没有分叉的路径压缩到一条边。另外每条边已经包含了足够的后缀信息,我们就不用再给节点标注字符串信息了。我们只需要在叶节点上标注上每项后缀的起始位置。于是我们得到下图:

这样的结构丢失了某些后缀。比如后缀X在上图中消失了,因为它正好是字符串XMADAMYX的前缀。为了避免这种情况,我们也规定每项后缀不能是其它后缀的前缀。要解决这个问题其实挺简单,在待处理的子串后加一个空字串就行了。例如我们处理XMADAMYX前,先把XMADAMYX变为 XMADAMYX$,于是就得到suffix tree。

这就形成一棵后缀树了。关于如何建立一棵后缀树,已有很成熟的算法,能在o(n)时间内解决。

广义后缀树是好几个字符串的的所有后缀组成的字典树,同样每个字符串的所有后缀都具有一个相同的结束符,不同字符串的结束符不同。

传统的后缀树只能处理一个单词的所有后缀。广义后缀树存储任意多个单词的所有后缀。例如字符串“abab”和“baba”,首先将它们使用特殊结束符链接起来,如表示成"ababbaba#",然后求连接后的新字符的后缀树,遍历所得后缀树,如遇到特殊字符,如"baba#",然后求连接后的新字符的后缀树,遍历所得后缀树,如遇到特殊字符,如"","#"等则去掉以该节点为跟的子树,最后所得后缀树即为原字符串组的广义后缀树。其实质是将两个字符串的所有后缀,即:abab,bab,bab,ab,b,b,baba#,aba#,ba#,a#,组成字典树,再进行压缩处理。

广义后缀树的一个常应用就是判断两个字符串的相识度。

简单地理解,满足以下两个条件的树就是二叉树:

二叉树的性质经过前人的总结,二叉树具有以下几个性质:

性质 3 的计算方法为:对于一个二叉树来说,除了度为 0 的叶子结点和度为 2 的结点,剩下的就是度为 1 的结点(设为 n1),那么总结点 n=n 0 +n 1 +n 2 。

同时,对于每一个结点来说都是由其父结点分支表示的,假设树中分枝数为 B,那么总结点数 n=B+1。而分枝数是可以通过 n1 和 n2 表示的,即 B=n 1 +2 n 2 。所以,n 用另外一种方式表示为 n=n 1 +2 n 2 +1。

两种方式得到的 n 值组成一个方程组,就可以得出 n 0 =n 2 +1。

二叉树还可以继续分类,衍生出满二叉树和完全二叉树。

如果二叉树中除了叶子结点,每个结点的度都为 2,则此二叉树称为满二叉树。

满二叉树除了满足普通二叉树的性质,还具有以下性质:

如果二叉树中除去最后一层节点为满二叉树,且最后一层的结点依次从左到右分布,则此二叉树被称为完全二叉树。

如图 3a) 所示是一棵完全二叉树,图 3b) 由于最后一层的节点没有按照从左向右分布,因此只能算作是普通的二叉树。

完全二叉树除了具有普通二叉树的性质,它自身也具有一些独特的性质,比如说,n 个结点的完全二叉树的深度为 [log 2 n ]+1。

[log 2 n ]表示取小于[log 2 n ]的最大整数。例如,[[log 2 4 ]] = 2,而 [[log 2 5 ]] 结果也是 2。

对于任意一个完全二叉树来说,如果将含有的结点按照层次从左到右依次标号(如图 3a)),对于任意一个结点 i ,完全二叉树还有以下几个结论成立:

数据结构中,树的度是什么?

一棵树中,最大的节点的度称为树的度。

树由根结点和腊租宴若干颗子树构成的。树是由一个集合以及在该集合上定义的一种关系构成的。集合中的元素称为树的结点,所定义的关系称为父子关系。父子关系在树的结点之间建立了一个层次结构。在这种层次结构中有一个结点具有特殊的地位,这个结点称为该树的根结点,或称为树根。

单个结点是一棵树,树根就是该结点本身。

设T1,T2,..,Tk是树,它们的根结点分别为n1,n2,..,nk。用一个新结点n作为n1,n2,..,nk的父亲,则得到一棵新树,结点n就是新树的根。我们称n1,n2,..,nk为一组兄弟结点,它们都是结点n的子结点。我们还称T1,T2,..,Tk为结点n的子树。轮银

空集合也是树,称为空树。空树中没有结点。

扩展资料:

相关术语

节点的型兄度:一个节点含有的子树的个数称为该节点的度;

叶节点或终端节点:度为0的节点称为叶节点;

非终端节点或分支节点:度不为0的节点;

双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点;

孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点;

兄弟节点:具有相同父节点的节点互称为兄弟节点;

节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;

树的高度或深度:树中节点的最大层次;

堂兄弟节点:双亲在同一层的节点互为堂兄弟;

节点的祖先:从根到该节点所经分支上的所有节点;

子孙:以某节点为根的子树中任一节点都称为该节点的子孙。

森林:由m(m=0)棵互不相交的树的集合称为森林。

参考资料来源:百度百科-树 (数据结构名词)  

关于数据结构树和数据结构树的应用实例的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

标签列表