回归法(stepwise逐步回归法)
本篇文章给大家谈谈回归法,以及stepwise逐步回归法对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
在回归分析中,采用逐步回归法和强迫回归法的区别是什么?
一、基本思想不同
1、强迫回归法是将所有选定的自变量一起放入模型中,直接去计算包含所有自变量的整个模型能够解释多少因变量中的变异,以及各个自变量单独的贡献有多少。
2、 逐步回归法的基本思想是:将变量一个一个引入,每引入一个变量时,要对已选入的变量进行逐个检验。当原引入的变量由于后面变量的引入而变得不再显著时,将其剔除。这个过程反复进行,直到既无显著的变量选穗汪梁入方程,也无不显著自变量从回归方程中剔除为止。
二、操作方式不同
1、强迫回归法在SPSS软件中操作步骤为:选择分析-回归-线性,选入需要分析的变量,方法栏中选入“进入”(英文enter)。
2、逐步回归法在SPSS软件中操作步骤为:选择分陵困析-回归-线性,选入需要分析的变量,方法栏中选入“逐步”(英文stepwise regression )。
三、优缺点不同
1、强迫回归法优点是将全部变量纳入回归模型中全面分析,缺点可能其中有的变量之间存在共线性时结果有偏。
2、逐步回归法基于当前数据,可以最大程度的解释因变量的变异,但其反面的作用就是会使模型有偏,鉴于算法是基于变量解释度猜运来进行特征提取的,当两个变量对因变量的影响相近时,则不免受到较大的噪声影响,使结果不稳定。
参考资料:
百度百科——回归
百度百科——多元回归
百度百科——逐步回归
[img]回归方法到底是什么?
回归方程是统计学中用来描述因变量和自变量之间关系的方程式。它一般表示为:
Y = β0 + β1X1 + β2X2 + ... + βkXk + ε
其中:
Y 是因变量,表示我们尺察要预测的结果。
X1, X2, ..., Xk 是自变量,表示影响因变量的因素。
β0, β1, β2, ..., βk 是回归系数,表示因变量与自变量之间的关陵备茄系。
ε 是误差项,表示不能被解释的随机误差。
对于回归系数的显著性,我们通常使用t检验和p值来评估。如果p值小于某个显著性水平(例如0.05),我们就可以认为这个回归系数是显著的。否则,我们就可以认为它不显著。
回归系数的经济含义就是因变量与自变量之间的关系。例如,如果回归系数 β1 是显著的,那么我们可以说:一个单位的滚羡变化(例如1)在 X1 自变量上,会引起 β1 在 Y 因变量上的变化。因此,我们可以利用回归方程来预测 Y 因变量的值,并通过回归系数来了解不同因素对因变量的影响程度。
线性回归法
在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函锋裤数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。(这反过来又应当由多个相关的因变量预测的多元线性回归区别,而不是一个单一的标量变量。)
回归分析中有多个自变量:这里有一个原则问题,这些自变量的重要性,究竟谁是最重要,谁是比较重要,谁是不重要。所以,spss线性回归有一个和逐步判别分析的等价的设置。
原理:是F检验。spss中的操作是“分析”~“回归”~“线性”主对话框方法框碧袜中需先选定“逐步”方法~“选项”银慧简子对话框
如果是选择“用F检验的概率值”,越小代表这个变量越容易进入方程。原因是这个变量的F检验的概率小,说明它显著,也就是这个变量对回归方程的贡献越大,进一步说就是该变量被引入回归方程的资格越大。究其根本,就是零假设分水岭,例如要是把进入设为0.05,大于它说明接受零假设,这个变量对回归方程没有什么重要性,但是一旦小于0.05,说明,这个变量很重要应该引起注意。这个0.05就是进入回归方程的通行证。
下一步:“移除”选项:如果一个自变量F检验的P值也就是概率值大于移除中所设置的值,这个变量就要被移除回归方程。spss回归分析也就是把自变量作为一组待选的商品,高于这个价就不要,低于一个比这个价小一些的就买来。所以“移除”中的值要大于“进入”中的值,默认“进入”值为0.05,“移除”值为0.10
如果,使用“采用F值”作为判据,整个情况就颠倒了,“进入”值大于“移除”值,并且是自变量的进入值需要大于设定值才能进入回归方程。这里的原因就是F检验原理的计算公式。所以才有这样的差别。
结果:如同判别分析的逐步方法,表格中给出所有自变量进入回归方程情况。这个表格的标志是,第一列写着拟合步骤编号,第二列写着每步进入回归方程的编号,第三列写着从回归方程中剔除的自变量。第四列写着自变量引入或者剔除的判据,下面跟着一堆文字。
关于回归法和stepwise逐步回归法的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。