hadoopmapreduce(hadoopmapreduce僵死)

本篇文章给大家谈谈hadoopmapreduce,以及hadoopmapreduce僵死对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

Hadoop和MapReduce究竟分别是做什么用的

Hadoop是用来开发分布式程序的架构,是一个由Apache基金会所开发的握猜磨分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。

MapReduce是用来做大规模并行数据处理的数据模型。方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上。

扩展资料

Hadoop是一个能够让用兆槐户轻松架构和使用的分布式计算平台。用户可以轻松地在Hadoop上开发和运行处理海量数据的应用程序。主要有以下几个优点   :

1、高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖   。

2、高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中  。

3、高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快  。

4、高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。

5、低成本。与一体机、段斗商用数据仓库以及QlikView、Yonghong Z-Suite等数据集市相比,hadoop是开源的,项目的软件成本因此会大大降低。

参考资料来源:百度百科-MapReduce

参考资料来源:百度百科-Hadoop

如何在Hadoop上编写MapReduce程序

用户配置并将一个Hadoop作业提到Hadoop框架中,Hadoop框架会把这个作业分解成一系列map tasks 和reduce tasks。Hadoop框架负责task分发和执行,结果收集和作业进度监控。

下图给出了一个作业从开始执行到结束所经历的阶段和每个阶段被谁控制(用户 or Hadoop框架)。

下图详细给出了用户编写MapRedue作业时需要进行那些工作以及Hadoop框架自动完成的工作:

在编写MapReduce程序时,用户分别通过InputFormat和OutputFormat指定输入和输出格式,并定义Mapper和Reducer指定map阶段和reduce阶段的要做的工作。在Mapper或者Reducer中,用户只需指定一对key/value的处理逻辑,Hadoop框架会自动顺序迭代解析所有key/value,并册则首将每对key/value交给Mapper或者Reducer处理。表面上看来,Hadoop限定数据格式必须为key/value形式,过于简单,很难解决复杂问题,实际上,可以通过组合的方法使key或者value(比如在key或者value中保存多个字段,每个字段用分隔符分开,或者value是个序列化后的对象,在Mapper中使用时,将其反序列化等)保存多重信息,以解决输入格式较复杂的应用。

2.2 用户的工作

用户编写MapReduce需要实现的类或者方法有:

(州数1) InputFormat接口

用户需要盯衡实现该接口以指定输入文件的内容格式。该接口有两个方法

其中getSplits函数将所有输入数据分成numSplits个split,每个split交给一个map task处理。getRecordReader函数提供一个用户解析split的迭代器对象,它将split中的每个record解析成key/value对。

Hadoop本身提供了一些InputFormat:

(2)Mapper接口

用户需继承Mapper接口实现自己的Mapper,Mapper中必须实现的函数是

void map(K1 key,

V1 value,

OutputCollectorK2,V2 output,

Reporter reporter

) throws IOException

其中,K1 V1是通过Inputformat中的RecordReader对象解析处理 的,OutputCollector获取map()的输出结果,Reporter保存了当前task处理进度。

Hadoop本身提供了一些Mapper供用户使用:

(3)Partitioner接口

用户需继承该接口实现自己的Partitioner以指定map task产生的key/value对交给哪个reduce task处理,好的Partitioner能让每个reduce task处理的数据相近,从而达到负载均衡。Partitioner中需实现的函数是

getPartition(  K2   key, V2 value, int numPartitions)

该函数返回K2 V2对应的reduce task ID。

用户如果不提供Partitioner,Hadoop会使用默认的(实际上是个hash函数)。

(4)Combiner

Combiner使得map task与reduce task之间的数据传输量大大减小,可明显提高性能。大多数情况下,Combiner与Reducer相同。

(5)Reducer接口

用户需继承Reducer接口实现自己的Reducer,Reducer中必须实现的函数是

Hadoop本身提供了一些Reducer供用户使用:

(6)OutputFormat

用户通过OutputFormat指定输出文件的内容格式,不过它没有split。每个reduce task将其数据写入自己的文件,文件名为part-nnnnn,其中nnnnn为reduce task的ID。

Hadoop本身提供了几个OutputFormat:

3. 分布式缓存

Haoop中自带了一个分布式缓存,即DistributedCache对象,方便map task之间或者reduce task之间共享一些信息,比如某些实际应用中,所有map task要读取同一个配置文件或者字典,则可将该配置文件或者字典放到分布式缓存中。

4. 多语言编写MapReduce作业

Hadoop采用java编写,因而Hadoop天生支持java语言编写作业,但在实际应用中,有时候,因要用到非java的第三方库或者其他原因,要采用C/C++或者其他语言编写MapReduce作业,这时候可能要用到Hadoop提供的一些工具。

[img]

hadoop和mapreduce是一种什么关系?

hadoop是依据mapreduce的原理旦物念,用Java语言模困实现的分布式处理机制。

Hadoop是一个能够对大量数据进行分布式处理的软件框架,实现了Google的MapReduce编程模型和框架,能够把应用程序分割成许多的小的工作单元,并把这些单元放到任何集群节点上执行。

MapReduce是Hadoop中的一个数据运算核心模块,MapReduce通过JobClient生成任务运行文件,并在JobTracker进行调度指派TaskTracker完成任务。

扩展资料

1、MapReduce分布式计算框架原型:

MapReduce分布式计算模型是由Google提出,主要用于搜索领域,解决海量数据的计蚂行算问题Apache对其做了开源实现,整合在hadoop中实现通用分布式数据计算。

MR由两个阶段组成:Map和Reduce,用户只需要实现map()和reduce()两个函数,即可实现分布式计算,非常简单。大大简化了分布式并发处理程序的开发。

Map阶段就是进行分段处理。

Reduce阶段就是进行汇总处理。汇总之后还可以进行数据的一系列美化操作,然后再输出。

2、MapReduce组件介绍:

JobClient:用于把用户的作业任务生成Job的运行包,并存放到HDFS中。

JobinProgress:把Job运行包分解成MapTask和ReduceTask并存放于TaskTracker中。

JobTracker(Master):进行调度管理TaskTracker执行任务。

TaskTracker(Slave):执行分配下来的Map计算或Reduce计算任务。

hadoop和mapreduce是一种什么关系?

hadoop是google的云计算系统的开源实现,谷歌集群系统主要包括三个部分:分布式文件系统GFS,分布式并行闹洞计算模型map/慎虚reduce,以及分布式数据库Bigtable,hadoop也实现了这三个,GFS对应HDFS,hadoop的map/reduce对应谷歌的map/reduce模型,宽弯燃Hbase对应Bigtable。

也就是map/reduce是谷歌提出的一种云计算模型,hadoop用java开源实现了

关于hadoopmapreduce和hadoopmapreduce僵死的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

标签列表