神经网络算法原理(神经网络算法原理详解)
本篇文章给大家谈谈神经网络算法原理,以及神经网络算法原理详解对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、神经网络算法是什么
- 2、简单介绍神经网络算法
- 3、深入浅出BP神经网络算法的原理
- 4、神经网络算法原理
神经网络算法是什么
神经网络算法是指逻辑性的思维是指根据逻辑规则进行推理的过程;神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点,主要的研究工敬弯作集中在生物原型研究、建立理论模型、网络模型与算法研亮敬闷究、人工神经网络应用系统等方面;生物原型研究:从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理;建立理论模型:根据生物原型的研究,建立神经元、神经网络的理论模型;网络模型与算法研究:在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件;人稿烂
[img]简单介绍神经网络算法
直接简单介绍神经网络算法
神经元:它是神经网络的基本单元。神经元先获得输入,然后执行某些数学运算后,再产生一个输出。
神经元内输入 经历了3步数学运算,
先将两个输入乘以 权重镇键 :
权重 指某一因素或指标相对于某一事物的重要程度,其不同于一般的比重,体现的不仅仅是某一因素或指标所占的百分比,强调的是因素或指标的相对重要程度
x1→x1 × w1
x2→x2 × w2
把两个结果相加,加上一个 偏置 :
(x1 × w1)+(x2 × w2)+ b
最后将它们经过 激活函数 处理得到输出:
y = f(x1 × w1 + x2 × w2 + b)
激活函数 的作用是将无限制的输入转换为可预测形式的输出。一种常用的激活函数是 sigmoid函数
sigmoid函数的输出 介于0和1,我们可以理解为它把 (−∞,+∞) 范围内的数压缩到 (0, 1)以内。正值越大输出越接近1,负向数值越大输出越接近0。
神经网络: 神经网络就是把一堆神经元连接在一起
隐藏层 是夹在输入输入层和输出卜银层之间的部分,一个神经网络可以有多个隐藏层。
前馈 是指神经元的输入向前传递获得输出的过程
训练神经网络 ,其实这就是一个优化的过程,将损失最小化
损失 是判断训练神经网络的一个标准
可用 均方误差 定义损失
均方误差 是反映 估计量 与 被估计量 之间差异程度的一种度量。设t是根据子样确定的总体参数θ的一个估计量,(θ-t)2的 数学期望御弊巧 ,称为估计量t的 均方误差 。它等于σ2+b2,其中σ2与b分别是t的 方差 与 偏倚 。
预测值 是由一系列网络权重和偏置计算出来的值
反向传播 是指向后计算偏导数的系统
正向传播算法 是由前往后进行的一个算法
深入浅出BP神经网络算法的原理
深入浅出BP神经网络算法的原理
相信每位刚接触神经网络的时候都会先碰到BP算法的问题,如何形象快速地理解BP神经网络就是我们学习的高级乐趣了(画外音:乐趣?你在跟我谈乐趣?)
本篇博文就是要简单粗暴地帮助各位童鞋快速入门采取BP算法的神经网络。
BP神经网络是怎样的一种定义?看这句话:一种按“误差逆传播算法训练”的多层前馈网络。
BP的思想就是:利用输出后的误差来估计输出层前一层的误差,再用这层误差来估计更前一层误差,如此获取所有各层误差估计。这里的误差估计可以理解为某种偏导数,我们就是根据这种偏导数来调整各层的连接权值,再用调整后的连接权值重新计算输出误差。直到输出的误差达到符合的要求或者迭代次数溢出设定值。
说来说去,“误差”这个词说的很多嘛,说明这个算法是不是跟误差有很大的关系?
没错,BP的传播对象就腔困是“误差”,传播目的就是得到所有层的估计误差。
它的学习规则是:使用最速下降法,通过反向传播(就是一层一层往前传)不断调整网络的权值和阈值,最后使全局误差系数最小。
它的学习本质就是:对各连接权值的动态调整。
拓扑结构如上图:输入层(input),隐藏层(hide layer),输出层(output)
BP网络的优势就是能学习和储存大量的输入输出的关系,而不用事先指出这种数学关系。那么它是如何学习的?
BP利用处处可导的激活函数伍芹念来描述该层输入与该层输出的关系,常用S型函数δ来当作激活函数。
我们现在开始有监督的BP神经网络学习算法:
1、正向传播得到输出层误差e
=输入层输入样本=各隐藏层=输出层
2、判断是否反向传播
=若输出层误差与期望不符=反向传播
3、误差反向传播
=误差在各层显示=修正各层单元的权值,直到误差减少到可接受程度。
算法阐述起来比较简单,接下来通过数学公式来认识BP的真实面目。
假设我们的网络结构是一个含有N个神经元的输入层,含有P个神经元的隐层,含有Q个神经元的输出层。
这些变量分别如下:
认识好以上变量后,开始计算:
一、用(-1,1)内的随机数初始化误差函数,并设定精度ε,最多迭代次数M
二、随机选取第k个输入样本及对应的期望输出
重复以下步骤至误差达到要求:
三、计算隐含层各神经元的输入和输出
四、计算误差函数e对输出层各神经元的偏导数,根据输出层期望输出和实际输出以及输出层输入等参数计算。
五、计算误差函数对隐藏层各神经元的偏导数,根据后一层(这里即输出层)的灵敏度(稍后介绍灵敏度)δo(k),后一层连接权值w,以及该层的输入值等参数计算
六、利用第四步中的偏导数来修正输出层连接权值
七、利用第五步中的偏导数来修正隐藏层连接权值
八、计算全局误差(m个样本,q个类别)
比较具体的计算方法介绍好了,接下来用比较简洁的数学公式来大致地概括这个过程,相信看完上述的详细步骤都会有些了解和领悟。
假设我们的神经网络是这样的,此时有两个隐藏层。
我们先来理解灵敏度是什么?
看下面一个公式:
这个公式是误差对b的一个偏导数,这个b是怎么?它是一个基,灵敏度δ就是首改误差对基的变化率,也就是导数。
因为?u/?b=1,所以?E/?b=?E/?u=δ,也就是说bias基的灵敏度?E/?b=δ等于误差E对一个节点全部输入u的导数?E/?u。
也可以认为这里的灵敏度等于误差E对该层输入的导数,注意了,这里的输入是上图U级别的输入,即已经完成层与层权值计算后的输入。
每一个隐藏层第l层的灵敏度为:
这里的“?”表示每个元素相乘,不懂的可与上面详细公式对比理解
而输出层的灵敏度计算方法不同,为:
而最后的修正权值为灵敏度乘以该层的输入值,注意了,这里的输入可是未曾乘以权值的输入,即上图的Xi级别。
对于每一个权值(W)ij都有一个特定的学习率ηIj,由算法学习完成。
神经网络算法原理
4.2.1 概述
人工神经网络的研究与计算机的研究几乎是同步发展的。1943年心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型,20世纪50年代末,Rosenblatt提出了感知器模型,1982年,Hopfiled引入了能量函数的概念提出了神经网络的一种数学模型,1986年,Rumelhart及LeCun等学者提出了多层感知器的反向传播算法等。
神经网络技术在众多研究者的努力下,理论上日趋完善,算法种类不断增加。目前,有关神经网络的理论研究成果很多,出版了不少有关基础理论的著作,并且现在仍是全球非线性科学研究的热点之一。
神经网络是一种通过模拟人的大脑神经结构去实现人脑智能活动功能的信息处理系统,它具有人脑的基本功能,但又不是人脑的真实写照。它是人脑的一种抽象、简化和模拟模型,故称之为人工神经网络(边肇祺,2000)。
人工神经元是神经网络的节点,是神经网络的最重要组成部分之一。目前,有关神经元的模型种类繁多,最常用最简单的模型是由阈值函数、Sigmoid 函数构成的模型(图 4-3)。
图4-3 人工神经元与两种常见的输出函数
神经网络学习及识别方法最初是借鉴人脑神经元的学习识别过程提出的。输入参数好比神经元接收信号,通过一定的权值(相当于刺激神经兴奋的桥桐薯强度)与神经元相连,这一过程有些类似于多元线性回归,但模拟的非线性特征是通过下一步骤体现的,即通过设定一阈值(神经元兴奋极限)来确定神经元的兴奋模式,经输出运算得到输出结果。经过大量样本进入网络系统学习训练之后,连接输入信号与神经元之间的权值达到稳定并可最大限度地符合已经经过训练的学习样本。在被确认网络结构的合理性和学习效果的高精度之后,将待预测样本输入参数代入网络,达到参数预测的目的。
4.2.2 反向传播算法(BP法)
发展到目前为止,神经网络模型不下十几种,如前馈神经网络、感知器、Hopfiled 网络、径向基函数网络、反向传播算法(BP法)等,但在储层参数反演方面,目前比较成熟比较流行的网络类型是误差反向传播神经网络(BP-ANN)。
BP网络是在前馈神经网络的基础上发展起来的,始终有一个输入层(它包含的节点对应于每个输入变量)和一个输出层(它包含的节点对应于每个输出值),以及至少有一个具有任意节点数的隐含层(又称中间层)。在 BP-ANN中,相邻层的节点通过一个任意初始权值全部相连,但同一层内各节点间互不相连。对于 BP-ANN,隐含层和输出层节点的基函数必须是连续的、单调递增的,当输入趋于正或负无穷大时,它应该接近于某一固定值,也就是说,基函数为“S”型(Kosko,1992)。BP-ANN 的训练是一个监督学习过程,涉及两个数据集,即训练数据集和监督数据集轮顷。
给网络的输入层提供一组输入信息,使其通过网络而在输出层上产生逼近期望输出的过程,称之为网络的学习,或称对网络进行训练,实现这一步骤的方法则称为学习算法。BP网络的学习过程包括两个阶段:第一个阶段是正向过程,将输入变量通过输入层经隐层逐层计算各单元的输出值;第二阶段是反向传播过程,由输出误差逐层向前算出隐层各单元的误差,并用此误差修正前层权值。误差信息通过网络反向传播,遵循误差逐步降低的原则来调整权值,直到达到满意的输出为止。网络经过学习以后,一组合适的、稳定的权值连接权被固定下来,将待预测样本作为输入层参数,网络经过向前传播便可以得到输出结果,这就是网络的预测。
反向传播算法主要步骤如下:首先选定权系数敏者初始值,然后重复下述过程直至收敛(对各样本依次计算)。
(1)从前向后各层计算各单元Oj
储层特征研究与预测
(2)对输出层计算δj
储层特征研究与预测
(3)从后向前计算各隐层δj
储层特征研究与预测
(4)计算并保存各权值修正量
储层特征研究与预测
(5)修正权值
储层特征研究与预测
以上算法是对每个样本作权值修正,也可以对各个样本计算δj后求和,按总误差修正权值。
关于神经网络算法原理和神经网络算法原理详解的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。