opencv目标检测(opencv目标检测原理)

本篇文章给大家谈谈opencv目标检测,以及opencv目标检测原理对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

目标跟踪(3)MultiTracker : 基于 OpenCV (C++/Python) 的多目标跟踪

在这篇文章中,我们将介绍如何使用通过 MultiTracker 类实现的 OpenCV 的多对象跟踪 API。我们将共享C++ 和 Python 代码。

大多数计算机视觉和机器学习的初学者都学习对象检测。如果您是初学者,您可能会想为什么我们需要对象跟踪。我们不能只检测每一帧中的对象吗?

让我们来探究一下跟踪是有用的几个原因。

首先,当在视频帧中检测到多个对象(例如人)时,跟踪有助于跨帧建立对象的身份。

其次,在某些情况下,对象检测可能会失败,但仍可能跟踪对象,因为跟踪考虑了对象在前一帧中的位置和外观。

第三,一些跟踪算法非常快,因为它们做的是局部搜索,而不是全局搜索。因此,我们可以通过每n帧进行目标检测,并在中间帧中跟踪目标,从而为我们的系统获得很高的帧率。

那么,为什么不在第一次检测后无限期地跟踪对象呢?跟踪算法有时可能会丢失它正在跟踪的对象。例如,当对象的运动太大时,跟踪算法可能跟不上。许多现实世界的应用程序同时使用检测和跟踪。

在本教程中,我们只关注跟踪部分。我们想要跟踪的对象将通过拖动它们周围的包围框来指定。

OpenCV 中的 MultiTracker 类提供了多目标跟踪的实现。它是一个简单的实现,因为它独立处理跟踪对象,而不对跟踪对象进行任何优化。

让我们逐步查看代码,了解如何使用 OpenCV 的多目标跟踪 API。

2.1 第 1 步:创建单一对象跟踪器

多目标跟踪器只是单目标跟踪器的集合。我们首先定义一个函数,该函数接受一个跟踪器类型作为输入,并创建一个跟踪器对象。OpenCV有8种不同的跟踪器类型:BOOSTING, MIL, KCF,TLD, MEDIANFLOW, GOTURN, MOSSE, CSRT。

如果您想使用 GOTURN 跟踪器,请务必阅读这篇文章并下载 caffe 模型。

在下面的代码中,给定跟踪器类的名称,我们返回跟踪器对象。这将在稍后用于多目标跟踪器。

Python

C++

2.2 第 2 步:读取视频的第一帧

多目标跟踪器需要两个输入

给定这些信息,跟踪器在所有后续帧中跟踪这些指定对象的位置。 在下面的代码中,我们首先使用 VideoCapture 类加载视频并读取第一帧。这将在稍后用于初始化 MultiTracker。

Python

C++

2.3 第 3 步:在第一帧中定位对象

接下来,我们需要在第一帧中定位我们想要跟踪的对象。该位置只是一个边界框。 OpenCV 提供了一个名为 selectROI 的函数,该函数会弹出一个 GUI 来选择边界框(也称为感兴趣区域 (ROI))。 在 C++ 版本中,selectROI 允许您获取多个边界框,但在 Python 版本中,它只返回一个边界框。所以,在 Python 版本中,我们需要一个循环来获取多个边界框。 对于每个对象,我们还选择一种随机颜色来显示边界框。 代码如下所示。

Python

C++

getRandomColors 函数相当简贺并单

2.4 第 3 步:初始化 MultiTracker

到目前为止,我们已经读取了第一帧并获得了对象周围的边界框。这就是我们初始化多目标跟踪器所需的所有信息。

我们首先创建一个 MultiTracker 对象,并向其中添加与边界框一样多的单个对象跟踪器。在此示例中,我们使用 CSRT 单对象跟踪器,但您可以通过将下面的 trackerType 变量更改为本文开头提到的 8 个跟踪器之一来尝试其他跟踪器类型。 CSRT 跟踪器不是最快的,但在我们尝试的许多情况禅雀迹下它产生了最好的结果。

您还可以使用包裹在同岁运一个 MultiTracker 中的不同跟踪器,但当然,这没什么意义。

MultiTracker 类只是这些单个对象跟踪器的包装器。正如我们从上一篇文章中知道的那样,单个对象跟踪器是使用第一帧初始化的,并且边界框指示我们想要跟踪的对象的位置。 MultiTracker 将此信息传递给它在内部包装的单个对象跟踪器。

Python

C++

2.5 第 4 步:更新 MultiTracker 并显示结果

最后,我们的 MultiTracker 已准备就绪,我们可以在新帧中跟踪多个对象。我们使用 MultiTracker 类的 update 方法来定位新框架中的对象。每个跟踪对象的每个边界框都使用不同的颜色绘制。

Python

C++

C++

Python

[img]

运动目标检测——光流法与opencv代码实现

运动目标的检测的其主要目的是 获取目标对象的运动参数(位置、速度、加速度等)及运动轨迹 ,通过进一步分析处理,实现对目标行为更高层级上的理解。

运动目标检测技术目的是 从序列图像中将变化区域从背景图像中提取出来 ,常用于视频监视、图像压缩、三维重构、异常检测等。

运动目标检测主流方法有帧差法、背景差法、光流法等。光流法源于 仿生学 思想,更贴近于直觉,大量昆虫的视觉机理便是基于光流法。

二十世纪五十年代心理学家Gibson在他的著作“The Perception of Visual World”中首次提出了以心理闷清学实验为基础的光流法基本概念,而直到八十年代才由Horn、Kanade、Lucash和Schunck创造性地将灰度与二维速度场相联系,引入光流约束方程的算法,对光流计算做了奠基性的工作。

光流(optical flow):由于目标对象或者摄像机的移动造成的图像对象在连续两帧图像中的移动。乱丛

小球在连续五帧运动构成的光流 小球在连续五帧运动构成的光流

通俗说,对于一个图片序列,把每张图像每个像素在连续帧之间的运动速度和方向( 某像素点在连续两帧上的位移矢量 )找出来就是光流场。

第t帧的时A点的位置是(x1, y1),蚂陪前第t+1帧时A点位置是(x2,y2),则像素点A的位移矢量:(ux, vy) = (x2, y2) - (x1,y1)

如何知道第t+1帧的时候A点的位置涉及到不同的光流计算方法,主要有四种:基于梯度的方法、基于匹配的方法、基于能量的方法、基于相位的方法。

光流法依赖于三个假设:

根据所形成的光流场中 二维矢量的疏密程度 ,光流法可分为稠密光流与稀疏光流。

基于区域匹配生成的稠密光流场 基于区域匹配生成的稠密光流场

稀疏光流只对有 明显特征的组点 (如角点)进行跟踪,计算开销小。

基于特征匹配发生成的稀疏光流场 基于特征匹配发生成的稀疏光流场

(1)calcOpticalFlowPyrLK

基于金字塔LK光流算法,计算某些点集的稀疏光流。

参考论文《Pyramidal Implementation of the Lucas Kanade Feature TrackerDescription of the algorithm》

(2)calcOpticalFlowFarneback

基于Gunnar Farneback 的算法计算稠密光流。

参考论文《Two-Frame Motion Estimation Based on PolynomialExpansion》

(3)CalcOpticalFlowBM

通过块匹配的方法来计算光流

(4)CalcOpticalFlowHS

基于Horn-Schunck 的算法计算稠密光流。

参考论文《Determining Optical Flow》

(5)calcOpticalFlowSF

论文《SimpleFlow: A Non-iterative, Sublinear Optical FlowAlgo》的实现

LK光流法效果 LK光流法效果

如何用OpenCV自带的adaboost程序训练并检测目标

目标检测分为三个步骤:1、 样本的创建2、 训练分类器3、 利用训练好的分类器进行目标检测。二、样本创建训练样本分为正例样本和反例样本,其中正例样本是指待检目标样本,歼销码反例样斗芹本指其它任意图片。负样本负样本可以来自于任意的图片,但这些图片不能包含目标特征。负样本由背景描述文件来描述。背景描述文件是氏哪一个文本文件,每一行包含了一个负样本图片的文件名(基于描述文件的相对路径)。该文件创建方法如下:采用Dos命令生成样本描述文件。具体方法是在Dos下的进入你的图片目录,比如我的图片放在D:\face\posdata下,则:按Ctrl+R打开Windows运行程序,输入cmd打开DOS命令窗口,输入d:回车,再输入cd D:\face\negdata进入图片路径,再次输入dir /b negdata.dat,则会图片路径下生成一个negdata.dat文件,打开该文件将最后一行的negdata.dat删除,这样就生成了负样本描述文件。

“opencv”是什么?

OpenCV是一个用于图像处理、分析、机器视觉方面的开源函数库.

无论你是做科学研究,还是商业应用,opencv都可以作为你理想的工具库,因为,对于这两者,它完全是免费的。

该库采用C及C++语言编写,可以在windows,linux,macOSX系统上面运行。该库的所有代码都经过优化,计算效率很高,因为,它更专注于设计成为一种用于实时系统的开源库。opencv采用C语言进行优化,而且,在多核机器上面,其运行速度会更快。它的一个目标是提供友好的机器视觉接口函数,从而使得复杂的机器视觉产品可以加速面世。该库包誉誉配含了横跨工业产品检测、医学图像处理、安防、用户界面、摄像头标定、三维成像、机器视觉等领域的超过500个接口函数。

同时,由于计算机视觉与机器学习密不可分,该库也包含了比较常用的一些机器学习算法。或许,很多人知道,图像识别、机器视觉在安防领域有所应用。但,很少有人知道,在航拍图片、街道图片(例如googlestreetview)中,要严重依赖于机器视觉的摄像头标定、图像融合等技术。

近年来,在入侵虚厅检测、特定目标跟踪、目标检测、人脸检测、人脸识别、人脸跟踪等领域,opencv可谓大显身手,而这些,仅仅是其应用的冰山一角。

如今,来自世界各地的各大公司、科研机构的研究人员,共同维护支持着opencv的开源库开发。这些公司和机构包括:微软,IBM,索尼、西门子、google、intel、斯坦福、MIT、CMU、剑桥。。。。

opencv 是 Intel的图像处理库,实现图像的基本处理,如膨胀,二值化处理,如果要学习,可以到ahref="";/a

下载安装。

OpenCV是Intel公司开发的图像处理和计算机视觉函数库,它有以下特点: 

1)开放C源码

2)基于Intel处理器指令集开发的优化代码

3)统一的结构和功能定义

4)强大的图像和矩阵运算能力

5)方便灵活的用户接口

6)同时支持MS-WINDOWS、LINUX平台

作为一个基本的计算机视觉、图像处理和模式识别的开源项目,OPENCV可以直接应用于很多领域,作为第二次开发的理想工具。不过在利用OPENCV做商庆指业开发应用前,请仔细阅读OPENCV包所附带的PUBLICLICENSE。

一些基本的资料可以参考:

=》源代码及文档下载:SOURCEFORGE.NET

ahref="";/a

=》INTEL的OPENCV主页:

ahref="";/a

=》YAHOO OPENCV 的邮件列表:

ahref="";/a

=》CMU(卡耐基-梅隆大学)的计算机视觉主页:

ahref="";/a

=》OPENCV 更为详细的介绍

ahref="";/a

=》OPENCV 的常用问题与解答

ahref="";/a

=》OPENCV 的安装指南

ahref="";/a

=》更多的最新资料,请访问

ahref="";/a

opencv是什么_pythonopencv是什么

OpenCV是一个用于图像处理、分析、机器圆谈视觉方面的开源函数库

无论你是做科学研究,还是商业应用,念腔罩opencv都可以作为你理想的工具库,因为,对于这两者,它完全是免费的

该库采用C及C语言编写,可以在windows,linux,macOSX系统上面运行

该库的所有代码都经过优化,计算效率很高,因为,它更专注于设计成为一种用于实时系统的开源库

opencv采用C语言进行优化,而且,在多核机器上面,其运行速度会更快

它的一个目标是提供友好的机器视觉接口函数,从而使得复杂的机器视觉产品可以加速面世

该库包含了横跨工业产品检测、医学图像处理、安防、用户界面、摄像头标定、三维成像、机器视觉等领域的超过500个接口函数

同时,由于计算机视觉与机器学习密不可分,该库也包含了比较常用的一些机器学习算法

或许,很多人知道,图像识别、机器视觉在安防领仔闹域有所应用

但,很少有人知道,在航拍图片、街道图片(例如googlestreetview)中,要严重依赖于机器视觉的摄像头标定、图像融合等技术

近年来,在入侵检测、特定目标跟踪、目标检测、人脸检测、人脸识别、人脸跟踪等领域,opencv可谓大显身手,而这些,仅仅是其应用的冰山一角

如今,来自世界各地的各大公司、科研机构的研究人员,共同维护支持着opencv的开源库开发

这些公司和机构包括:微软,IBM,索尼、西门子、google、intel、斯坦福、MIT、CMU、剑桥

关于opencv目标检测和opencv目标检测原理的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

标签列表