opencvimwrite(opencvimwrite函数用法)
本篇文章给大家谈谈opencvimwrite,以及opencvimwrite函数用法对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、cv2.rectangle()、cv2.putText()和cv2.imwrite()用法
- 2、opencv的img.flat的函数用法
- 3、opencv中Mat数据怎么保存为JPG格式的图片
- 4、opencv中为什么保存的图片和显示的图片不同?
- 5、opencv中的cv2.imwrite()不报错,却保存不上图片
- 6、opencv-python 缺口识别
cv2.rectangle()、cv2.putText()和cv2.imwrite()用法
OpenCV-Python 是旨在解决计算机视觉问题的Python绑定库。
cv2.rectangle() 方法用于在任何图像上绘制矩形。
参数:
image: 它是要在其上绘制矩形的图像。
start_point: 它是矩形的起始坐标。局渣桥坐标表示为两个值的元组,即(X坐标值,Y坐标值)。
end_point: 它是矩形的结束坐标。坐标表示为两个值桐猛的元组,即( X 坐标值 ÿ 坐标值)。
color: 它是要绘制的矩形的边界线的颜色。对于 BGR ,我们通过一个元组。例如:(255,0,0)为蓝色。
thickness: 它是矩形边框线的粗细 像素 。厚度 -1像素 将以指定的颜色填充矩形形状。
返回值: 它返回一个图像梁档。
cv2.putText() 方法用于在任何图像上绘制文本字符串。
参数:
image: 它是要在其上绘制文本的图像。
text: 要绘制的文本字符串。
org: 它是图像中文本字符串左下角的坐标。坐标表示为两个值的元组,即(X坐标值,Y坐标值)。
font: 它表示字体类型。一些字体类型是 FONT_HERSHEY_SIMPLEX,FONT_HERSHEY_PLAIN, 等
fontScale: 字体比例因子乘以font-specific基本大小。
color: 它是要绘制的文本字符串的颜色。对于 BGR ,我们通过一个元组。例如:(255,0,0)为蓝色。
thickness: 它是线的粗细 像素 。
lineType: 这是一个可选参数,它给出了要使用的行的类型。
bottomLeftOrigin: 这是一个可选参数。如果为true,则图像数据原点位于左下角。否则,它位于左上角。
返回值: 它返回一个图像。
示例:
[img]opencv的img.flat的函数用法
Mat类:
是用于保存图像以及其他矩阵数据的数据结构。
图像载入函数imread():
Mat imread(const string filename, int flags=1);
filename表示图像载入的路径;
flags为载入标识。
flags=0 将图像转换为灰度再返回;
flags=1 将图像转换成彩色再返回;
flags=2 若载入图像的深度是16位或者32位,就返回对应的图像深度,否则,将图像转换为8位图像再返回。
flags=2|4 载入最真实无损的源图像
若flags不在枚举类型当中,flags0 返回一个三通道的彩色图像;flags=0 返回灰度图像;flags0 返回包含Alpha通道的加载图像。
图像显示函数imshow():
void imshow(const string winname, InputArray mat);
winname填写要显示的窗口标识名称;
mat填需要显示的图像。
输出图像到文件imwrite():
bool imwrite(const string filename, InputArray img, const vector params=vector());
第一个参数filename表示要写入的文件名
第二个参数img表示Mat类型的图像数据
通道分离split()函数;
void split(const Mat src, Mat* mvbegin);
void split(InputArray m, OutputArrayofArray mv);
第一个参数表示需要进行分离的多通道数组;
第二个参数表示函数 输出数组或输出的vector容器。
通道合并merge()函数:
void merge(const Mat* mv, size_t count, OutputArray dst)
void merge(InputArrayOfArray mv, OutputArray dst);
第一个参数mv表示需要被合并的输入矩阵或vector容器的阵列,mv参数中所有矩阵必须拥有一样的尺寸;
第二个参数count表示当mv为空白的C数组时,代表输入矩阵的个数,通常可以省略不写;
第三个参数dst表示输出矩阵,和mv拥有一样的尺寸和深度
Python与OpenCV图像简单操作
文章目录
OpenCV安装
1.读取图片
2.保存图片
3.截取部分图像
4.图片翻转
5.缩放图片
6.转换为灰度图像
7.在一个窗陪乱口中显示两张图片
8.绘图功能
OpenCV安装
打开命令行输入 pip install opencv-python(前提是有python环境)
1.读取图片
使用 cv2.imread() 函数,给出了几种读取图片路径的写法
import cv2#导入opencv包
#python中不需要声明变量
img1 = cv2.imread("D:/test/1.jpg")#绝对路径,推荐
img2 = cv2.imread("D:\\test\\2.jpg")#通常是两个斜线,单右斜线会被当成转义符
img3 = cv2.imread("3.jpeg")#相对路径,将图片放在py文件对应目录下
cv2.imshow("test1", img1)
cv2.imshow("test2", img2)
cv2.imshow("test3", img3)
cv2.waitKey(0)#没有这一句图片会一闪而过
##waitkey(delay=0),等待用户输入按键,返回该按键的值
2.保存图片
使用 cv2.write() 函数保存图片
import cv2# 导入OpenCV包
img=cv2.imread("D:/test/3.png",cv2.IMREAD_COLOR)
cv2.imshow("test",img)#OpenCV可以实现不同格式图片转换,支持jpg、bmp、png等图片格式相互无损转换
cv2.imwrite("D:/test/3.1.png",img)#将改变后的图像保存
cv2.imwrite("D:/段乱高test/3.2.bmp",img)
cv2.waitKey(0)
3.截取部分图像
import cv2
img = cv2.imread("D:\\test\\2.jpg")
frame = img[200:400,200:400] #截取部分图像,200-400行,200-400列
cv2.imshow("test",frame)#显示握尺截取后的图像
cv2.waitKey(0)
4.图片翻转
使用cv2.flip(img,flipcode)来进行图片翻转
flipcode控制图片翻转方向
import cv2
img=cv2.imread("D:/test/5.jpg",cv2.IMREAD_COLOR)
flipCode1=1#大于0左右翻转
flipCode2=0#等于0上下翻转
flipCode3=-1#小于0先上下翻转再左右翻转
img1 = cv2.flip(img, flipCode1)#filpCode控制图片翻转方向
img2 = cv2.flip(img, flipCode2)
img3 = cv2.flip(img, flipCode3)
cv2.imshow("test",img)
cv2.imshow("test1",img1)
cv2.imshow("test2",img2)
cv2.imshow("test3",img3)
cv2.waitKey(0)
5.缩放图片
cv2.resize(img,dsize,fx,fy),dsize和fx,fy都可以设置图片大小,不能同时为0
import cv2# 导入OpenCV包
img = cv2.imread("D:/test/2.jpg",cv2.IMREAD_COLOR)
img1 = cv2.resize(img, (700, 700))#设置输出图片的尺寸
img2 = cv2.resize(img, None, fx=0.7, fy=0.7)#None的位置本来是输出图片的尺寸,这里设置了缩放因子
#fx-水平轴上的比例因子,fy-垂直轴上的比例因子
cv2.imshow("test", img)
cv2.imshow("test1", img1)
cv2.imshow("test2", img2)
cv2.imwrite("D:/test/resize.jpg", img1)# 保存图像
cv2.waitKey(0)
6.转换为灰度图像
cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
cv2.COLOR_RGB2GRAY表示把RGB图像转为灰度图像,2前是转换前,2后是转换后
import cv2#导入opencv包
#python中不需要声明变量
img = cv2.imread("D:/test/1.jpg")#cv2.imread读进来的图片格式是BGR(W,H,C),而不是RGB
cv2.imshow("BGR", img)
#将图像转换为RGB格式
img1 = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)#因为opencv读取图片是按BGR读的,所以转换为RGB反而不像原图
cv2.imshow("RGB",img1)
#将图像转换为灰度图像
img2 = cv2.cvtColor(img1, cv2.COLOR_RGB2GRAY)
cv2.imshow("GRAY",img2)
cv2.waitKey(0)
7.在一个窗口中显示两张图片
import cv2
import numpy as np
img = cv2.imread("D:/test/resize.jpg")
img2 = cv2.imread("D:/test/resize.jpg")
#imgs = np.hstack([img,img2])#在水平方向上平铺
imgs = np.vstack([img,img2])#在竖直方向上堆叠
cv2.imshow("mutil_pic", imgs)
cv2.waitKey(0)
8.绘图功能
import cv2
import numpy as np
img = 255*np.ones((350,512,3),np.uint8)#unit8:0~255
#ones()为创建一个元素均为一的矩阵
font = cv2.FONT_HERSHEY_DUPLEX
#font = cv2.FONT_HERSHEY_COMPLEX# 设置字体
#文本 # 图片对象、文本、 位置、 字体、字体大小、颜色、 字体粗细
cv2.putText(img, "happy day", (50,300), font, 0.8, (25, 25, 25), 2,)#颜色可以自己调整,范围为0-255
#线 #起点 终点 颜色 粗细
cv2.line(img, (50,310), (185,310), (0, 0,0),4)
#矩形 #左上顶点 右下顶点
cv2.rectangle(img, (80,8), (200,100), (0, 255,0),2)
#圆形 #圆心 半径 颜色 控制是否填充 -1表示填充
cv2.circle(img,(60,60),30,(0,0,213),1)
#椭圆 #中心点 长轴 短轴 偏转角度,起始角度,终止角度
cv2.ellipse(img,(100,300),(100,50),180,0,360,(20,213,79),1)
cv2.imshow("Draw", img)
cv2.waitKey(0)
1.np.vstack([img1,img2]) 当img1和img2图片矩阵维度相同时才能堆叠
2.除了imread,imwrite 函数没有返回值以外,flip,resize,cvtColor,vstack,hstack都有返回一个图片回来。
opencv中Mat数据怎么保存为JPG格式的图片
opencv中有将jpg文件读取为mat的衫绝搏imread函数,也有将mat数据存储为各类图像格式的imwrite函数。或祥详细的使用方法可以参宏纤考opencv的手册
opencv中为什么保存的图片和显示的图片不同?
应该是图像的深度不同一造成,先看辩键一下你的代码中各个环节是否统一了图像的深度CV_8SC1,也有可能是系统的看图软件对8bit深和灶友度的图像显示的有唤槐问题。
opencv中的cv2.imwrite()不报错,却保存不上图片
cv2.imwrite()函数不会创建新的此册文件夹,也不会报错。保存图片失败的原因可能有两森迹宏个:
1.保存路径不州颂存在,可以在cv2.imwrite()语句之前加一个检查路径的语句
2.保存路径有中文,这点很常见,也很容易忽视
opencv-python 缺口识别
一、cv函数
1、imread:读取图片
imread(image_path, flag):
images_path:图片路径,找不到不报错
flag:
1/cv2.IMREAD_COLOR:彩色图片,图片透明性会被忽略,默认参数
0/cv2.IMREAD_GRAYSCALE:灰色图片
-1/cv2.IMREAD_UNCHANGED:包括其锋袜消alpha通道
2、imwrite
imwrite(img_path_name,img)
img_path_name:保存的文件名
img:文件对象
3、cvtColor
cvtColor(img,code)
img: 图像对象
code:
cv2.COLOR_RGB2GRAY: RGB转换到灰度模式
cv2.COLOR_RGB2HSV: RGB转换到HSV模式(hue,saturation,Value)
4、matchTemplate
matchTemplate(img_path, bg_path, cv2.TM_CCOEFF_NORMED)
img_path:对比图片
银知 bg_path:背景图片
cv2.TM_CCOEFF_NORMED
```
# encoding=utf8
import cv2
import numpyas np
def show(name):
cv2.imshow('Show', name)
cv2.waitKey(0)
cv2.destroyAllWindows()
def main():
otemp ='./images/tb.png'
oblk ='./images/bg.jpg'
target = cv2.imread(otemp, 0)
template = cv2.imread(oblk, 0)# 读取到两个图片,进行灰值化处理
好岩 w, h = target.shape[::-1]
aa = target.shape
print(aa)
print(w, h)
temp ='./images/temp.jpg'
targ ='./images/targ.jpg'
cv2.imwrite(temp, template)
cv2.imwrite(targ, target)# 处理后进行保存
target = cv2.imread(targ)
target = cv2.cvtColor(target, cv2.COLOR_BGR2GRAY)# 转化到灰度
target =abs(255 - target)# 返回绝对值
cv2.imwrite(targ, target)# 重新写入
target = cv2.imread(targ)
template = cv2.imread(temp)
result = cv2.matchTemplate(target, template, cv2.TM_CCOEFF_NORMED)# 进行匹配
x, y = np.unravel_index(result.argmax(), result.shape)# 通过np转化为数值,就是坐标
print(y, x)
# 展示圈出来的区域
cv2.rectangle(template, (y, x), (y + w, x + h), (7, 249, 151), 2)
show(template)
return y, x
if __name__ =='__main__':
a, b = main()
```
关于opencvimwrite和opencvimwrite函数用法的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。