包含hbasehive的词条

本篇文章给大家谈谈hbasehive,以及对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

hive和hbase有什么关系和区别

应该是Hadoop在hbase和Hive中的作用吧。 hbase与hive都是架构在hadoop之上的。都是用旅迟燃hadoop作为底层存储。而hbase是作为分布式数据库,而hive是作为分布式拆虚数据仓库。当然hive还是借用hadoop的MapReduce来完成一些hive中的命令的执行。而hbase与hive都是单独安装的。你需要哪个安装哪旦闷个,所以不存在重复信息。

[img]

hive 和hbase 有什么区别

hbase和hive的主要区别是:他们对于其内部的数据的存储和管理方式是不同的,hbase其主要特点是仿照bigtable的列势存储,对于大型的数据的存储,查询比传统数据仿拦咐库有巨大的优势,而hive其产生主要应对的数据仓库问题,其将存在在hdfs上的文件目录结构映射成表。主要关注的是对数据的统计等方面。适合的场景:hbase:适合大型数据存储,其作用可以类比于传统数据库的作用,主要关注的数据的存取。hive:适合大数据的管理,统计,处理,其作用类比于传统的数据仓库,主要关注的数据的处理。总结:应对大数据的时候,如果你偏重于备纯数据存储查询hbase无疑是更加适合,而你关注的是对大数据的处理结果查询,比如你查询的时候有类似于count,sum等函数操作 hive就能衡颤满足你的需求,一般有些项目都输在hive里面进行数据处理,然后将结果导入mysql等数据库或者hbase中进行查询,至于mysql与hbase的选择 比较倾向于你的处理之后的数据量

hbase和hive的差别是什么,各自适用在什么场景中

Hive和Hbase是两种基于Hadoop的不同技术--Hive是一种类SQL的引擎,并且运行MapReduce任务,Hbase是一种在Hadoop之上的NoSQL 的Key/vale数据库腔搏。当然,这两种工具是可以同时使用的。就像用Google来搜索,用FaceBook进行社交一样,Hive可以用来进行统计查询,HBase可以用来进行实时查询,数据也可以从Hive写到Hbase,设置再从Hbase写伍凳祥回Hive

共同点:

1.hbase与hive都是架构在hadoop之上的。都是用hadoop作为底层存储

区别:

1.Hive是建立在Hadoop之上为了减少MapReduce jobs编写工作的批处理系统,HBase是为了支持弥补Hadoop对实时操作的缺陷的项目 。

2.想象你在操作RMDB数据库,如果是全表扫描,就用Hive+Hadoop,如果是索引访问,就用HBase+Hadoop 。

3.Hive query就是MapReduce jobs可以从5分钟到数小时不止,HBase是非常高效的,肯定比Hive高效的多。

4.Hive本身不存储和计算数据,它完全依赖于HDFS和MapReduce,Hive中的表纯逻辑,就只是表的定义等,即表的元数据。这样就可以将结构化的数据文件映射为一张数据库表,并提供完整的SQL查询功能,并将SQL语句最终转换为MapReduce任务进行运行。

5.hive借用hadoop的MapReduce来完成一些hive中的命令的执行

6.hbase是物理表,不是逻辑表,提供一个超大的内存hash表,搜索引擎通过它来存储索引,方便查询操作。

7.hbase是列存储。

8.hdfs作为底层存储,hdfs是存放文件的系统,而Hbase负责组粗轮织文件。

9.hive需要用到hdfs存储文件,需要用到MapReduce计算框架。

hive与hbase区别

Apache Hive 和 Apache HBase 都是大数据中不可思议的工具。虽然它们的功能存在一些重叠丛好,但 Apache Hive 和 Apache HBase 都具有独特的品质,使它们更适合特定任务。一些主要区别包括:

虽然这两个工具都是Hadoop的衍生产品,但它们不为用户提供相同的功能。然而,尽管存在差异,Apache Hive 和 Apache HBase 都是处理大数据时优先考虑的两块工具和解决方案。

每个工具都有自己的优缺点。因此,Hive 和 HBase各自都存在一些限制。

首先,虽然Hive也具有非常基本的 ACID 功能,但它们没有像 MYSQL 那样成熟完备的产品架构,速度无法满足日常OLTP型业务。

Hive 查询通常也具有高延迟。由于它在 Hadoop 上运行批处理,因此获取查询结果可能需要几分钟甚至1小时。此外,更新数据可能既复杂又耗时。

Hive 不是擅长用于查询数据集(尤其是大数据集中)当中的部分数据,大多数用户倾向于依赖传统的 RDBMS (关系型数据)来处理这些数据集。

HBase 查询采用自定义语言,需要经过培训才能学习。HBase 并不完全符合 ACID,尽管它确实支持某些属性。

HBase 可以通过协同处理来处理小数据,但它仍然不如 RDBMS(关系型数据库) 有用。

1、Hive 应该用于对一段时间内收集的数据进行分析查询——例如,计算趋势或网站日志。

2、HDFS 的 SQL 查询引擎 - 您可以利用 Hive的HQL来查询处理 Hadoop 数据集,然后将它们连接到相应的BI工具,进行相关报表展示。

1、雹郑神HBase 非常适合实时查询大数据(例如 Facebook 曾经将其用于消息传递)。Hive 不能用于实时源亏查询,因为速度很慢。

2、HBase 主要用于将非结构化 Hadoop 数据作为一个湖来存储和处理。您也可以将 HBase 用作所有 Hadoop 数据的仓库。

3、大量数据需要长期保存, 且数量会持续增长,而且瞬间写入量很大。

关于hbasehive和的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

标签列表