语音识别模型(百度语音识别模型)

本篇文章给大家谈谈语音识别模型,以及百度语音识别模型对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

CMU Sphinx 语音识别入门:语音识别基本概念

   CMU Sphinx是目前语音识别技术中比较热门的开源技术之一。CMU Sphinx 是一款源于卡内基梅隆大学的产品。它的研发历史大约可以追溯到1988年李开复的一篇论文,目前在 GitHub 和 SourceForge 平台同步更新。在 GitHub 平台有 C 和 Java 两个版本,而且据说分别只有一个管理员维护。但在 SourceForge 平台却有 9 个管理员和十几个开发者。CMU Sphinx 具有包括普通话、英语、法语、西班牙语和意大利语在内的诸多语音可以直接使用的模型。

   在介绍如何使用CMU Sphinx之前,先简单了解一下语音识别的相关概念。

  在目前的实践中,语音结构可以理解如下:

  语音是一种由稳定状态和动态变化的状态混合而成的连续音频流(audio stream)。在这一系列状态中,可以对声音和音素定义若干相似的类别。声波往往由语音内容,发言者和发音方式等各种音素决定。纳仿

  识别语音的一般方法如下:针对一段声波,使用沉默将其分割成若干短发音,然后试着去识别每段发音中的内容。为此,可以用尽可能的单词组合去匹配音频,然后选出最佳的匹配方案,作为语音识别的结果。

  在这个匹配过程中几个比较重要的概念。首先介绍“特征”的概念。首先语音需要被分解成一系列“帧”,每10毫秒一帧,然后对于每一帧,提取39个数字来表征该段语音,这39个数字称之为“特征向量”。如何从音频的每帧中提取数字是个广泛研究的话题,一种简单的方式就是由声谱衍生出来。

  接下碧茄袭来介绍一下“模型”的概念。模型是一种汇集了语音的共同属性的数学模型。实际应用中,一个音素的声学模型往往是其最可能的特征向量的高斯混合模型。该语音模型通常称之为隐马尔可夫模型( Hidden Markov Model,HMM),HMM是语音识别领域中一种常用的模型。

  然后就是“匹配过程”的概念,匹配过程是将特征向量与所有坑你的模型进行比较,然后得出最悔兄佳的匹配方案。

  根据语音的结构,语音识别过程中需要用到三种不同的模型。

参考:

语音识别技术的模型

目前,主流的大词汇量语音识别系统多采用统计模如答族式识别技术。典型的基于统计模式识别方法的 语音识别系统由以下几个基本模块所构成

信号处理及特征提取模块。该模块的主要任务是从输入信号中提取特征,供声学模型处理。同时,它一般也包括了一些信号处理技术,以尽可能降低环境噪声、信道、说话人等因素对特征造成的影响。 统计声学模型。典型系统多采用基于一阶隐马尔科夫模型进行建模。 发音词典。发音词典包含系统所能处理的词汇集及其发音。发音词典实际提供了声学模型建模单元与语言模型建模单元间的映射。 语言模型。语言模型对系统所针对的语言进行建模。理论上,包括正则语言,上下文无关文法在内的各种语言模型都可以作为语言模型,但目前各种系统普遍采用的还是基于统计的N元文法及其变体。 解码器。解码器是语音识别系统的核心之一,其任务是对输入的信号,根据声学、语言模型及词典,寻找能够以最大概率输出该信号的词串。 从数学角度可以更加清楚的了解上述模块之间的关系。首先,统计语音识别的最基本问题是,给定输入信号或特征序列,符号集(词典),求解符号串使得:

W = argmaxP(W | O) 通过贝叶斯公式,上式可以改写为

由于对于确定的输入串O,P(O)是确定的,因此省略它并不会影响上式的最终结果,因此,一般来说语音识别所讨论的问题可以用下面的公式来表示,可以将它称为语音识别的基本公式。 W = argmaxP(O | W)P(W)

从这个角度来看,信号处理模块提供了对输入信号的预处理,也就是说,提供了从采集的语音信号(记为S)到 特征序列O的映射。而声学模型本身定义了一些更具推广性的声学建模单元举毁,并且提供了在给定输入特征下,估计P(O | uk)的方法。

为了将声学模型建模单元串映射到符号集,就需要发音词典发挥作用。它实际上定义了映射的映射。为了表示方便,也可以定义一个由到U的全集的笛卡尔积,而发音词典则是这个笛卡尔积的一个子集。并且有:

最后,语言模型则提供了P(W)。这样,基本公式就可以更加具体的写成:

对于解码器来说,就是要在由,,ui以及时间标度t张成的搜索空间中,找到上式所指明的W。

语音识别是一门交叉学科,语音识别正逐步成为信息技术中人机接口的关键技术,语音识别技术与语音合成技术结合使人们能够甩掉键盘,通过语音命令进行操作。语音技术的应用已经成为一个具有竞争性的新兴高技术产业。

与机器进行语音交流,让机器明白你说什么,这是人们长期以来梦寐以求的事情。语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。语音识别是一门交叉学科。近二十年来,语音识别技术取得显著进步,开始从实验室走向市场。人们预计,未来10年内,渣弊语音识别技术将进入工业、家电、通信、汽车电子、医疗、家庭服务、消费电子产品等各个领域。语音识别听写机在一些领域的应用被美国新闻界评为1997年计算机发展十件大事之一。很多专家都认为语音识别技术是2000年至2010年间信息技术领域十大重要的科技发展技术之一。

[img]

语音识别的过程是什么?语音识别的方法有哪几种?

语音识别的过程和方法具体如下:

语音识别过程

1、语音信号采集

语音信号采集是语音信号处理的前提。语音通常通过话筒输入计算机。话筒将声波转换为电压信号,然后通过A/D装置(如声卡)进行采样,从而将连续的电压信号转换为计算机能够处理的数字信号。

目前多媒体计算机已经非常普及,声卡、音箱、话筒等已是个人计算机的基本设备。其中声卡是计算机对语音信进行加工的重要部件,它具有对信号滤波、放大、A/D和D/A转换等功能。而且,现代操作系统都附带录音软件,通过它可以驱动声卡采集语音信号并保存为语音文件。

对于现场环境不好,或者空间受到限制,特别是对于许多专用设备,目前广泛采用基于单片机、DSP芯片的语音信号采集与处理系统。

2、语音信号预处理

语音信号号在采集后首先要进行滤波、A/D变换,预加重(Preemphasis)和端点检测等预处理,然后才能进入识别、合成、增强等实际应用。

滤波的目的有两个:一是抑制输入信号中频率超出//2的所有分量(/:为采样频率),以防止混叠干扰;二是抑制50Hz的电源工频干扰。因此,滤波器应该是一个带通滤波器。

A/D变换是将语音模拟信号转换为数字信号。A/D变换中要对信号进行量化,量化后的信号值与原信号值之间的差值为量化误差,又称为量化噪声。

预加重处理的目的是提升高频部分,使信号的频谱变得平坦,保持在低频到高频的整个频带中,能用同样的信噪比求频谱,便于频谱分析。

端点检测是从包含语音的一段信号中确定出语音的起点和终点。有效的端点检测不仅能减少处理时间,而且能排除无声段的噪声干扰码搏。目前主要有两类方法:时域特征方法和频域特征方法。

时域特征方法是利用语音音量和过零率进行端点检测,计算量小,但对气音会造成误判,不同的音量计算也会造成检测结果不同。频域特征方法是用声音的频谱的变异和熵的检测进行语音检测,计算量较大。

3、语音信号的特征参数提取

人说话的频率在10kHz以下。根据香农采样定理,为了使语音信号的采样数据中包含所需单词的信息,计算机的采样频率应是需要记录的语音信号中包含的最高语音频率的两倍以上。

一般将信号分割成若干块,信号的每个块称为帧,为了保证可能落在帧边缘的重要信息不会丢失,应该使帧有重叠。例如,当使用20kH的采样面率时,标准的一帧为10ms,包含200个采样值。

话筒等语音输入设备可以采集到声波波形,虽然这些声音的波形包含了所需单词的信息,但用肉眼观察这些波形却得不到多少信息因此,需要从采样数据中抽取那些能够帮助辨别单词的特征信息。在语音识别中,常用线性预测编码技术抽取语音特征。

线性预测编码的基本思想是:语音信号采样点之间存在相关性,可用过去的若干采样点的线性组合预测当前和将来的采样点值。线性预测系数埽以通过使预测信号和实际信号之间的均方误差最小来唯一确定。

语音线性预测系数作为语音信号的一种特征参数,已经广泛应用于语音处理各个领域。

4、向置量化

向历高量量化(Vector Quantization,VQ)技术是20世纪W年代后期发展起来的一种数据压缩和编码技术。经过向量量化的特征向量也可以作为后面隐马尔可夫模型中的输入观察符号。

在标量量化中整个动态范围被分成若干个小区间,每个小区间有一个代表值,对于一个输入的标量信号,量化时落入小区间的值就用这个代表值[戈替。因为这时的信号量是一维的标量,所以称为标量量化。

向量量化的概念是用线性空间的观点,把标量改为一维的向量,对向量进行量化。和标量量化一样,向量量化是把向量空间分成若干个小区域,每个小区域寻找一个代表向量,量化时落入小区域迟烂祥的向量就用这个代表向量代替。

向量量化的基本原理是将若干个标量数据组成一个向量(或者是从一帧语音数据中提取的特征向量)在多维空间给予整体量化,从而可以在信息量损失较小的情况下压缩数据量。

语音识别

1、模板(template)匹配法

在训练阶段,用户将词汇表中的每一个词依次说一遍,并且将其特征向量作为模板存入模板库。在识别阶段,将输入语音的特征向量序列,依次与模板库中的每个模板进行相似度比较,将相似度最高者作为识别结果输出。

2、随机模型法

随机模型法是目前语音识别研究的主流。其突出的代表是隐马尔可夫模型。语音信号在足够短的时间段上的信号特征近似于稳定,而总的过程可看成是依次相对稳定的某一特性过渡到另一特性。隐马尔可夫模型则用概率统计的方法来描述这样一种时变的过程。

3、概率语法分析法

这种方法是用于大长度范围的连续语音识别。语音学家通过研究不同的语音语谱图及其变化发现,虽然不同的人说同一些语音时,相应的语谱及其变化有种种差异,但是总有一些共同的特点足以使他们区别于其他语音,也即语音学家提出的“区别性特征”。

另一方面,人类的语言要受词法、语法、语义等约束,人在识别语音的过程中充分应用了这些约束以及对话环境的有关信息。

于是,将语音识别专家提出的“区别性特征”与来自构词、句法、语义等语用约束相互结合,就可以构成一个“自底向上”或“自顶向下”的交互作用的知识系统,不同层次的知识可以用若干规则来描述。

语音识别的语言模型

语言模型主要分为配凳姿规则模型和统计模型两种。统计语言模型是用概率统计的方法来揭示语言单位内在的统计规律,其中N-Gram简单有效,粗携被广泛使用。

N-Gram:该模型基于这样一种假设,第n个词的出现只与前面N-1个词相关,而与其它任何词都不相关,整句的概率就是各个词出现概率的乘积。这些概率可以通过直接从语料中统计N个词同时出现的次数得到。常用的是二元的Bi-Gram和三元的Tri-Gram。

语言模型的性能通常用交叉熵和复杂度(Perplexity)来衡量。交叉熵的意义是用该模型对文本识别的难度,或者从压缩的角度来看,每个词平均要用几个位来编码。复杂度的意义是用该模型表示这一文本平均的分支数,其倒数可视为每个词的平均概率。平滑是指对没观察到的N元组合赋予一培绝个概率值,以保证词序列总能通过语言模型得到一个概率值。通常使用的平滑技术有图灵估计、删除插值平滑、Katz平滑和Kneser-Ney平滑。

语音识别的声学模型

语音识别系统的模型通常由声学模型和语言模型两部分组成,分别对应于语音到音节概率的计算和音节到字概率的计算。本节和下一节分别介绍声学模型和册判蚂语言模型方面的技术。

HMM声学建模:马尔可夫模型的概念是一个离散时域有限状态自动机,隐马尔可夫模型HMM是指这一马尔可夫模型的内部状态外界不可见,外界只能看到各个时刻的输出值。对语音识别系统,输出值通常就是从各个帧计算而得的声学特征。用HMM刻画语音信号需作出两个假设,一是内部状态的转移只与上一状态有关,另一是输出值只与当前状态(或当前的状态转移)有关,这两个假设大大降低了模型的复杂度。HMM的打分、解码和训练相应的算法是前向算法、Viterbi算法和前向后向算法。

语音识别中使用HMM通常是用从左向右单向、带自环、带跨越的拓扑结构来对识别基元建模,一个音素就是一个三至五状态的HMM,一个词就是构成词的多个音素的HMM串行起来构成的HMM,而连续语音识别的整个模型就是词和静音组合起来的HMM。

上下文相关建模:协同发音,指的是一个音受前后相邻音的影响而发生变化,从发声机理上看就是人的发声器官在一个音州埋转向另一个音时其特性只能渐变,从而使得后一个音的频谱与其他条件下的频谱产生差异。上下文相关建模方法在建模时考虑了这一影响,从而使模型能更准确地描述语音,只考虑前一音的影响的称为Bi- Phone,考虑前一音和后一音的影响的称为Tri-Phone。

英语的上下文相关建模通常以音素为基元,由于有些音素对其后音素的影响是相似的,因而可以通过音素解码状态的聚类进行模型参数的共享。聚类的结果称为senone。决策树用来实现高效的triphone对senone的对应,通过回答一系列前后音所属类别(元/辅音、清/浊音等等)的问题,最终确定其HMM状态应使用哪个senone。分类回冲简归树CART模型用以进行词到音素的发音标注。

汉语语音识别系统搭建音素识别模型大约有多少个

汉语语音识别系统搭建音素识别模型大约有200个。

语言模型技术广泛应用于语音识别、OCR、机器翻译、输入法等产品上。语言模型建模过程中,包括词典、语料、模型选择,对产品的性能有至关重要的影响。

语言模型的建模需要利用复杂的模型公式进行模拟计算,是人工智能领域的关键技术之一。语言模型是针对某种语言建立的概率模型,目的是建立一个能够描述给定词序列在语言中的出现的概率的分布。

给定下边两句话:定义机器人时代的大脑引擎,让生活更便捷、更有趣、更安全。代时人机器定义引擎的大脑,生活让更便捷,有趣更,安更全。语言模型会告诉你,第一句话的概率毕基更高,更像一句歼没”人话”。

语言模型技术广泛应用于语音识别、OCR、机器翻译、输入法等产品上。语言模型建模过程中,包括词典、语料、模型选择,对产品的性能有至关重要的氏数纳影响。Ngram模型是最常用的建模技术,采用了马尔科夫假设,目前广泛地应用于工业界。

语言模型的性能,很大程度上取决于语料的质量和体量。和特定任务匹配的大语料,永远是最重要的。但是实际应用中,这样的语料往往可遇不可求。

传统的ngram建模技术,对长距离的依赖处理的欠佳。如工业界常用的四元模型,即当前词的概率,只依赖三个历史词。因此,更远距离的历史词在建模中,没有对当前词概率产生影响。

此外,ngram模型建模的参数空间过于庞大。同样以四元模型为例,词典大小为V,参数空间就是。实际应用中V大小为几万到几个。

关于语音识别模型和百度语音识别模型的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

标签列表