包含opencvnormalize的词条
本篇文章给大家谈谈opencvnormalize,以及对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、opencv显示归一化后的图片
- 2、OpenCV C++(四)----对比度增强
- 3、怎样使用OpenCV进行人脸识别
- 4、OpenCV-Python系列六:图像滤波
- 5、Image Normalization
opencv显示归一化后的图片
//看着改扮袭携改
IplImage *pImg
cvNamedWindow("0"); //创厅伏建显示框禅陆
cvShowImage("0",pImg); //显示图片
OpenCV C++(四)----对比度增强
对比度增强或者称为对比度拉伸就是图像增强技术的一种,它主要解决由于图像的灰度级范围较小造成的对比度较低的问题,目的就是将输出图像的灰度级放大到指定的程度,使得图像中的细节看起来更加清晰。对比 度增强有几种常用的方法,如线性变换、分段线性变换、伽马变换、直方图正规化、直方图均衡化、局部自适应直方图均衡化等。
灰度直方图是图像灰度级的函数, 用来描述每个灰度级在图像矩阵中的像素个数或者占有率(概率)。
OpenCV提供了函数 calcHist 来实现直方图的构建,但是在计算8位图的灰度直方图 时,它使用起来略显复杂。下面是OpenCV源码
可以定义函数 calcGrayHist 来计算灰度直方图,其中输入参数为8位图,将返回的灰度直方图存储为一个1行256列的 Mat 类型。
图像对比度是通过灰度级范围来度量的,而灰度级范围可通过观察灰度直方图得到,灰度级范围越大代表对比度越高;反之,对比度越低,低对比度的图像在视觉上给人的感觉是看起来不够清晰,所以通过算法调整图像的灰度值,从而调整图像的对比度是有必要的。最简单的一种对比度增强方法是通过灰度值的线性变换来实现的。
当a=1,b=0时,O为I的一个副本;如果a1,则输出图像O的对 比度比I 有所增大;如果0a 1,则O的对比度比I有所减小。而b值的改变,影响的是输出图像的亮度,当b 0时,亮度增加;当b0时,亮度减小。
在OpenCV中实现一个常数与矩阵相乘有多种方式桥腔。
1、convertTo
注:当输出矩阵的数据类型是 CV_8U 时, 大于255的值会自动截断为255
2、矩阵乘法运算
使用乘法运算符“*”, 无论常数是什么数据类型, 输出矩阵的数据类型总是和输入矩阵的数据类型相同,当数据类型是 CV_8U 时,在返回值中将大于255的值自动截断为255。
3、convertScaleAbs
直方图正规化是一种自动选取a和b的值的线性变换方法。
利用 minMaxLoc 函数不仅可以计算出矩阵中的最大值和最小值, 而且可以求出最大 值的位置和最小值的位置。 当然,
在使用过程中如果只想得到最大值和最小值, 则将其 他的变量值设为 NULL 即可。
OpenCV提供的函数: normalize()
使用函数 normalize 对图像进行对比度增强时, 经常令参数码腔 norm_type=NORM_MINMAX , 和直方图正规化原理详解中提到的计算方法是相同的, 参数 alpha 相当于 Omax , 参数 beta 相当于 Omin 。 注意, 使用 normalize 可以处理多通道矩阵, 分别对每一敏模衫个通道进行正规化操作。
非线性变换 。
假设输入图像为I,宽为W、 高为H,首先将其灰度值归一化到[0,1]范围,对于8位 图来说,除以255即可。 I (r, c) 代表归一化后的第r行第c列的灰度值, 输出图像记为 O, 伽马变换就是令 O(r, c) =I(r, c) γ , 0≤rH, 0≤c W,
当γ=1时, 图像不变。 如果图像整体或者感兴趣区域较暗, 则令0 γ 1可以 增加图像对比度; 相反, 如果图像整体或者感兴趣区域较亮, 则令γ1可以降低图像对比度。
伽马变换在提升对比度上有比较好的效果, 但是需要手动调节γ值。
全局直方图均衡化操作是对图像I进行改变, 使得输出图像O的灰度直方图 hist O 是“平”的, 即每一个灰度级的像素点个数是“相等”的。 注意,其实这里的“相等”不是严格意义上的等于, 而是约等于,
上述分别为I和O的累加直方图
总结,对于直方图均衡化的实现主要分四个步骤:
OpenCV实现的直方图均衡化函数 equalize-Hist , 其使用方法很简单, 只支持对 8位图 的处理。
虽然全局直方图均衡化方法对提高对比度很有效,但是均衡化处理以后暗区域的噪声可能会被放大,变得清晰可 见,而亮区域可能会损失信息。为了解决该问题, 提出了自适应直方图均衡化(Aptive Histogram Equalization) 方法。
自适应直方图均衡化首先将图像划分为不重叠的区域块(tiles) ,然后对每一个块分别进行直方图均衡化。 显然, 在没有噪声影响的情况下, 每一个小区域的灰度直方图会被限制在一个小的灰度级范围内; 但是如果有噪声, 每一个分割的区域块执行直方图均衡化后, 噪声会被放大。为了避免出现噪声这种情况, 提出了“限制对比度”(Contrast Limiting) [3],如果直方图的bin超过了提前预设好的“限制对比度”, 那么会被裁减, 然 后将裁剪的部分均匀分布到其他的bin, 这样就重构了直方图。
OpenCV提供的函数 createCLAHE 构建指向 CLAHE 对象的指针, 其中默认设置“限制 对比度”为40,块的大小为8×8。
[img]怎样使用OpenCV进行人脸识别
友情提示,要看懂配弯代码前,你得先知道OpenCV的安装和配置,会用C++,用过一些OpenCV函数。基本的图像处理和矩阵知识也是需要的。[gm:我是箫鸣的注释]由于我仅仅是翻译,对于六级才过的我,肯定有一些翻译错的或者不当的地方,所以请大家纠错。
1.1.介绍Introduction
从OpenCV2.4开始,加入了新的类FaceRecognizer,我们可以使用它便捷地进行人脸识别实验。本文既介绍代码使用,又介绍算法原理。(他写的源代码,我们可以在OpenCV的opencv\modules\contrib\doc\facerec\src下找到,当然也可以在他的github中找到,如果你想研究源码,自然可以去看看,不复杂)
目前支持的算法有
Eigenfaces特征脸createEigenFaceRecognizer()
Fisherfaces createFisherFaceRecognizer()
LocalBinary Patterns Histograms局部二值直方图 createLBPHFaceRecognizer()
下面所有的例子中的代码在OpenCV安装目录下的samples/cpp下面都能找到,所有的代码商用或者学习都是免费的。
1.2.人脸识别Face Recognition
对人类来说,人脸识别很容易。文献[Tu06]告诉我们,仅仅是才三天的婴儿已经可以区分周围熟悉的人脸了。那么对于计算机来说,到底有多难?其实,迄今为止,我们对于人类自己为何可以区分不同的人所知甚少。是人脸内部特征(眼睛、鼻子、嘴巴)还是外部特征(头型、发际线)对于人类识别更有效?我们怎么分析一张图像,大脑是如何对它编码的?David Hubel和TorstenWiesel向我们展示,我们的大脑针对不同的场景,如线、边、角或者运动这些局部特征有专门的神经细胞作出反应。显然我们没有把世界看成零散的块块,我们的视觉皮层必须以某种方式把不同的信息来源转化成有用的模塌唤式。自动人脸识别就是如何从一幅图像中提取有意义的特征,把它们放入一种有用的表示方式,然后对他们进行一些分类。基于几何特征的人脸的人脸识别可能是最直观的方法来识别人脸。第一个自动人脸识别系统在[Kanade73]中又描述:标记点(眼睛、耳朵、鼻子等的位置)用来构造一个特征向量(点与点之间的距离、角度等)。通过计算测试和训练图像的特征向量的欧氏距离来进行识别。这样的方法对于光照变化很稳健,但也有巨大的缺点:标记点的确定是很复杂的,即使是使用最先进的算法。一些几何特征人脸识别近期工作在文献[Bru92]中有描述。一个22维的特征向量被用在一个大数据库上,单靠几何特征不能提供足够的信息用于人脸识别。
特征脸方法在文献[TP91]中有描述,他描述了一个全面的方法来识别人脸:面部图像是一个点,这个点是从高维图像空间找到它在低维空间的表示,这样分类变得很简单。低维子空间低维是使用主元分析(Principal Component Analysis,PCA)找到的,它可以找拥有最大方差的那个轴。虽然这样的转换是从最佳重建角度考虑的,但是他没有把标签问题考虑进去。[gm:读懂这团卖凯段需要一些机器学习知识]。想象一个情况,如果变化是基于外部来源,比如光照。轴的最大方差不一定包含任何有鉴别性的信息,因此此时的分类是不可能的。因此,一个使用线性鉴别(Linear Discriminant Analysis,LDA)的特定类投影方法被提出来解决人脸识别问题[BHK97]。其中一个基本的想法就是,使类内方差最小的同时,使类外方差最大。
近年来,各种局部特征提取方法出现。为了避免输入的图像的高维数据,仅仅使用的局部特征描述图像的方法被提出,提取的特征(很有希望的)对于局部遮挡、光照变化、小样本等情况更强健。有关局部特征提取的方法有盖伯小波(Gabor Waelets)([Wiskott97]),离散傅立叶变换(DiscreteCosinus Transform,DCT)([Messer06]),局部二值模式(LocalBinary Patterns,LBP)([AHP04])。使用什么方法来提取时域空间的局部特征依旧是一个开放性的研究问题,因为空间信息是潜在有用的信息。
1.3.人脸库Face Database
我们先获取一些数据来进行实验吧。我不想在这里做一个幼稚的例子。我们在研究人脸识别,所以我们需要一个真的人脸图像!你可以自己创建自己的数据集,也可以从这里()下载一个。
ATTFacedatabase又称ORL人脸数据库,40个人,每人10张照片。照片在不同时间、不同光照、不同表情(睁眼闭眼、笑或者不笑)、不同人脸细节(戴眼镜或者不戴眼镜)下采集。所有的图像都在一个黑暗均匀的背景下采集的,正面竖直人脸(有些有有轻微旋转)。
YaleFacedatabase A ORL数据库对于初始化测试比较适合,但它是一个简单的数据库,特征脸已经可以达到97%的识别率,所以你使用其他方法很难得到更好的提升。Yale人脸数据库是一个对于初始实验更好的数据库,因为识别问题更复杂。这个数据库包括15个人(14个男人,1个女人),每一个都有11个灰度图像,大小是320*243像素。数据库中有光照变化(中心光照、左侧光照、右侧光照)、表情变化(开心、正常、悲伤、瞌睡、惊讶、眨眼)、眼镜(戴眼镜或者没戴)。
坏消息是它不可以公开下载,可能因为原来的服务器坏了。但我们可以找到一些镜像(比如 theMIT)但我不能保证它的完整性。如果你需要自己剪裁和校准图像,可以阅读我的笔记(bytefish.de/blog/fisherfaces)。
ExtendedYale Facedatabase B 此数据库包含38个人的2414张图片,并且是剪裁好的。这个数据库重点是测试特征提取是否对光照变化强健,因为图像的表情、遮挡等都没变化。我认为这个数据库太大,不适合这篇文章的实验,我建议使用ORL数据库。
1.3.1. 准备数据
我们从网上下了数据,下了我们需要在程序中读取它,我决定使用CSV文件读取它。一个CSV文件包含文件名,紧跟一个标签。
/path/to/image.ext;0
假设/path/to/image.ext是图像,就像你在windows下的c:/faces/person0/image0.jpg。最后我们给它一个标签0。这个标签类似代表这个人的名字,所以同一个人的照片的标签都一样。我们对下载的ORL数据库进行标识,可以获取到如下结果:
./at/s1/1.pgm;0
./at/s1/2.pgm;0
...
./at/s2/1.pgm;1
./at/s2/2.pgm;1
...
./at/s40/1.pgm;39
./at/s40/2.pgm;39
想象我已经把图像解压缩在D:/data/at下面,而CSV文件在D:/data/at.txt。下面你根据自己的情况修改替换即可。一旦你成功建立CSV文件,就可以像这样运行示例程序:
facerec_demo.exe D:/data/at.txt
1.3.2 Creating the CSV File
你不需要手工来创建一个CSV文件,我已经写了一个Python程序来做这事。
[gm:说一个我实现的方法
如果你会cmd命令,或者称DOS命令,那么你打开命令控制台。假设我们的图片放在J:下的Faces文件夹下,可以输入如下语句:
J:\Faces\ORLdir /b/s *.bmp at.txt
然后你打开at.txt文件可能看到如下内容(后面的0,1..标签是自己加的):
。。。。
J:\Faces\ORL\s1\1.bmp;0
J:\Faces\ORL\s1\10.bmp;0
J:\Faces\ORL\s1\2.bmp;0
J:\Faces\ORL\s1\3.bmp;0
J:\Faces\ORL\s1\4.bmp;0
J:\Faces\ORL\s1\5.bmp;0
J:\Faces\ORL\s1\6.bmp;0
J:\Faces\ORL\s1\7.bmp;0
J:\Faces\ORL\s1\8.bmp;0
J:\Faces\ORL\s1\9.bmp;0
J:\Faces\ORL\s10\1.bmp;1
J:\Faces\ORL\s10\10.bmp;1
J:\Faces\ORL\s10\2.bmp;1
J:\Faces\ORL\s10\3.bmp;1
J:\Faces\ORL\s10\4.bmp;1
J:\Faces\ORL\s10\5.bmp;1
J:\Faces\ORL\s10\6.bmp;1
。。。。
自然还有c++编程等方法可以做得更好,看这篇文章反响,如果很多人需要,我就把这部分的代码写出来。(遍历多个文件夹,标上标签)
]
特征脸Eigenfaces
我们讲过,图像表示的问题是他的高维问题。二维灰度图像p*q大小,是一个m=qp维的向量空间,所以一个100*100像素大小的图像就是10,000维的图像空间。问题是,是不是所有的维数空间对我们来说都有用?我们可以做一个决定,如果数据有任何差异,我们可以通过寻找主元来知道主要信息。主成分分析(Principal Component Analysis,PCA)是KarlPearson (1901)独立发表的,而 Harold Hotelling (1933)把一些可能相关的变量转换成一个更小的不相关的子集。想法是,一个高维数据集经常被相关变量表示,因此只有一些的维上数据才是有意义的,包含最多的信息。PCA方法寻找数据中拥有最大方差的方向,被称为主成分。
算法描述Algorithmic Description
令 2 表示一个随机特征,其中 3 .
计算均值向量 4
5
计算协方差矩阵 S
6
计算 的特征值7 和对应的特征向量 8 9
对特征值进行递减排序,特征向量和它顺序一致. K个主成分也就是k个最大的特征值对应的特征向量。
x的K个主成份:
10
其中11 .
PCA基的重构:
12
其中 13 .
然后特征脸通过下面的方式进行人脸识别:
A. 把所有的训练数据投影到PCA子空间
B. 把待识别图像投影到PCA子空间
C. 找到训练数据投影后的向量和待识别图像投影后的向量最近的那个。
还有一个问题有待解决。比如我们有400张图片,每张100*100像素大小,那么PCA需要解决协方差矩阵 14的求解,而X的大小是10000*400,那么我们会得到10000*10000大小的矩阵,这需要大概0.8GB的内存。解决这个问题不容易,所以我们需要另一个计策。就是转置一下再求,特征向量不变化。文献 [Duda01]中有描述。
[gm:这个PCA还是自己搜着看吧,这里的讲的不清楚,不适合初学者看]
OpenCV中使用特征脸Eigenfaces in OpenCV
给出示例程序源代码
#include "opencv2/core/core.hpp"
#include "opencv2/contrib/contrib.hpp"
#include "opencv2/highgui/highgui.hpp"
#include iostream
#include fstream
#include sstream
usingnamespace cv;
usingnamespace std;
static Mat norm_0_255(InputArray _src) {
Mat src = _src.getMat();
// 创建和返回一个归一化后的图像矩阵:
Mat dst;
switch(src.channels()) {
case1:
cv::normalize(_src, dst, 0,255, NORM_MINMAX, CV_8UC1);
break;
case3:
cv::normalize(_src, dst, 0,255, NORM_MINMAX, CV_8UC3);
break;
default:
src.copyTo(dst);
break;
}
return dst;
}
//使用CSV文件去读图像和标签,主要使用stringstream和getline方法
staticvoid read_csv(const string filename, vectorMat images, vectorint labels, char separator =';') {
std::ifstream file(filename.c_str(), ifstream::in);
if (!file) {
string error_message ="No valid input file was given, please check the given filename.";
CV_Error(CV_StsBadArg, error_message);
}
string line, path, classlabel;
while (getline(file, line)) {
stringstream liness(line);
getline(liness, path, separator);
getline(liness, classlabel);
if(!path.empty()!classlabel.empty()) {
images.push_back(imread(path, 0));
labels.push_back(atoi(classlabel.c_str()));
}
}
}
int main(int argc, constchar*argv[]) {
// 检测合法的命令,显示用法
// 如果没有参数输入则退出!.
if (argc 2) {
cout "usage: " argv[0]" csv.ext output_folder " endl;
exit(1);
}
string output_folder;
if (argc ==3) {
output_folder = string(argv[2]);
}
//读取你的CSV文件路径.
string fn_csv = string(argv[1]);
// 2个容器来存放图像数据和对应的标签
vectorMat images;
vectorint labels;
// 读取数据. 如果文件不合法就会出错
// 输入的文件名已经有了.
try {
read_csv(fn_csv, images, labels);
} catch (cv::Exception e) {
cerr "Error opening file \"" fn_csv "\". Reason: " e.msg endl;
// 文件有问题,我们啥也做不了了,退出了
exit(1);
}
// 如果没有读取到足够图片,我们也得退出.
if(images.size()=1) {
string error_message ="This demo needs at least 2 images to work. Please add more images to your data set!";
CV_Error(CV_StsError, error_message);
}
// 得到第一张照片的高度. 在下面对图像
// 变形到他们原始大小时需要
int height = images[0].rows;
// 下面的几行代码仅仅是从你的数据集中移除最后一张图片
//[gm:自然这里需要根据自己的需要修改,他这里简化了很多问题]
Mat testSample = images[images.size() -1];
int testLabel = labels[labels.size() -1];
images.pop_back();
labels.pop_back();
// 下面几行创建了一个特征脸模型用于人脸识别,
// 通过CSV文件读取的图像和标签训练它。
// T这里是一个完整的PCA变换
//如果你只想保留10个主成分,使用如下代码
// cv::createEigenFaceRecognizer(10);
//
// 如果你还希望使用置信度阈值来初始化,使用以下语句:
// cv::createEigenFaceRecognizer(10, 123.0);
//
// 如果你使用所有特征并且使用一个阈值,使用以下语句:
// cv::createEigenFaceRecognizer(0, 123.0);
//
PtrFaceRecognizer model = createEigenFaceRecognizer();
model-train(images, labels);
// 下面对测试图像进行预测,predictedLabel是预测标签结果
int predictedLabel = model-predict(testSample);
//
// 还有一种调用方式,可以获取结果同时得到阈值:
// int predictedLabel = -1;
// double confidence = 0.0;
// model-predict(testSample, predictedLabel, confidence);
//
string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel);
cout result_message endl;
// 这里是如何获取特征脸模型的特征值的例子,使用了getMat方法:
Mat eigenvalues = model-getMat("eigenvalues");
// 同样可以获取特征向量:
Mat W = model-getMat("eigenvectors");
// 得到训练图像的均值向量
Mat mean = model-getMat("mean");
// 现实还是保存:
if(argc==2) {
imshow("mean", norm_0_255(mean.reshape(1, images[0].rows)));
} else {
imwrite(format("%s/mean.png", output_folder.c_str()), norm_0_255(mean.reshape(1, images[0].rows)));
}
// 现实还是保存特征脸:
for (int i =0; i min(10, W.cols); i++) {
string msg = format("Eigenvalue #%d = %.5f", i, eigenvalues.atdouble(i));
cout msg endl;
// 得到第 #i个特征
Mat ev = W.col(i).clone();
//把它变成原始大小,为了把数据显示归一化到0~255.
Mat grayscale = norm_0_255(ev.reshape(1, height));
// 使用伪彩色来显示结果,为了更好的感受.
Mat cgrayscale;
applyColorMap(grayscale, cgrayscale, COLORMAP_JET);
// 显示或者保存:
if(argc==2) {
imshow(format("eigenface_%d", i), cgrayscale);
} else {
imwrite(format("%s/eigenface_%d.png", output_folder.c_str(), i), norm_0_255(cgrayscale));
}
}
// 在一些预测过程中,显示还是保存重建后的图像:
for(int num_components =10; num_components 300; num_components+=15) {
// 从模型中的特征向量截取一部分
Mat evs = Mat(W, Range::all(), Range(0, num_components));
Mat projection = subspaceProject(evs, mean, images[0].reshape(1,1));
Mat reconstruction = subspaceReconstruct(evs, mean, projection);
// 归一化结果,为了显示:
reconstruction = norm_0_255(reconstruction.reshape(1, images[0].rows));
// 显示或者保存:
if(argc==2) {
imshow(format("eigenface_reconstruction_%d", num_components), reconstruction);
} else {
imwrite(format("%s/eigenface_reconstruction_%d.png", output_folder.c_str(), num_components), reconstruction);
}
}
// 如果我们不是存放到文件中,就显示他,这里使用了暂定等待键盘输入:
if(argc==2) {
waitKey(0);
}
return0;
}
OpenCV-Python系列六:图像滤波
图像滤波是一种十分常见的图像处理手段。通常,你可以认为相邻位置像素是紧密联系的,它们共同来显示对某个物体,图像滤波则通过运算来排除图像中和周围相差庆闭大的像素。当然,这并不是绝对的, 有时候你为了评估图像的质量,也会将这些“特立独行”的像素作为选取的目标 。无论你采用什么方法,记住你要的目标就行,有时候你的目标可能是别人的背景。
滤波常常会使得图像变得模糊(非绝对),那么,为什么你需要将一幅清晰的图像变得模糊呢?下面的例子应该可以解释。
高斯滤波采用满足正态分布的核模板,其参数的主要参数是标准差σ,代表核的离散程度,σ值越小,模板中心系数与边缘系数差越大,平滑的程度越小。
高斯滤波对图像采集过程中由于不良照明/高温引起的传感器噪声信号有较好的效果,消除了图像中的高频信号。
由于得到的是一维的Gaussian Kernel,你可以采用下面的方式转为二维的
为了便于直观感受高斯滤波的效果,使用Canny算子来提取轮廓对比,你可以试试在特征提取前加高斯滤波对比。
补充说明:对于均值滤波,你也可以使用cv2.boxFilter(src, ddepth, ksize[, dst[, anchor[, normalize[, borderType]]]])来实现,需要将normalize设置为True,当设置normalize为False时,实现的是将kernel内像素相加,官方文档做出的描述为:
中值滤波对图像中誉迅裂的脉冲型(椒盐等)噪声信号处理效果好,当 你的应用场景存在这种颗粒感的噪声信号时,中值滤波会昌哪是一种很好的选择 。它,选取kernel区域内像素点集的中值最为锚点的像素值,对类似投票机制中的最高分(高灰阶点)和最低分(过低灰阶点)影响有很好的抑制作用。
如果你的应用涉及到图像美化,双边滤波可以初步达到你的期望,关于双边滤波,这里不做展开,由你来探索,其函数参数信息如下。
对于opencv-python的图像滤波部分有问题欢迎留言, Have Fun With OpenCV-Python, 下期见。
Image Normalization
1、图像归一化的作用:
归一化的相大游关方法:在opencv的normalize()中提供了四种归一化的闭肢方法,如下图轿仿世2所示
关于opencvnormalize和的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。