数据挖掘的步骤(数据挖掘)

本篇文章给大家谈谈数据挖掘的步骤,以及数据挖掘对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

数据挖掘的基本步骤是什么

本文操作环境:windows10系统、thinkpad t480电脑。

具滑逗卜体步骤如下:

1、定义问题

在开始知识发现之前最先的也是最重要的要求就是了解数据和业务问题。必须要对目标有一个清晰明确的定义,即决定到底想干什么。比如,想提高电子信箱的利用率时,想做的可能是“提高用户使用率”,也可能是“提高一次用户使用的价值”,要解决这两个问题而建立的模型几乎是完全不同的,必须做出决定。

2、建立数据挖掘库

建立数据挖掘库包括以下指衡几个步骤:数据收集,数据描述,选择,数据质量评估和数据清理,合并与整合,构建元数据,加载数据挖掘库,维护数据挖掘库。

3、分析数据

分析的目的是找到对预测输出影响最大的数据字段,和决定是否需要定义导出字段。如果数据集包含成百上千的字段,那么浏览分析这些数据将是一件非常耗时和累人的事情,这时需要选择一个具有好的界面和功能强大的工具软件来协助你完成这些事情。

4、准备数据

这是建立模型之前的最后一步数据准备工作。可以把此步骤分为四个部分:选择变量,选择记录,创建新变量,转换变量。

5、建立模型

建立模型是一个反复的过程。需要仔细考察不同的模型以判断哪个模型对面对的商业问题最有用。先用一部分数据建立模型,然后再用剩下的数据来测试和验证这个得到的模型。有时还有第三个数据集,称为验证集,因为测试集可能受模型的特性的影响,这时需要一个独立的数据集来验证模型的准确性。训练和测试数据挖掘模型需要把数据至少分成两个部分,一个用于模型训练,另一个用于模型测试。

6、评价模型

模型建立好之后,必须评价得到的结果、解释模型的价值。从测试集中得到的准确率只对用于建立模型的数据有意义。在实际应用中,需要进一步了解错误的类型和由此带来的相关费用的多少。经验证明,有效的模型并不一定是正确的模型。造成这一点的直接原因就是模型建立中隐含的各种假定,因此,直接在现实世界中测试模型很重要。先在小范围内应用,取得测试数据,觉得满意之后再向大范围推广。

7、实施

模型建立并经验证信穗之后,可以有两种主要的使用方法。第一种是提供给分析人员做参考;另一种是把此模型应用到不同的数据集上。

免费学习视频分享:编程入门

[img]

数据挖掘的主要步骤有哪些?

(1)信息收集:根据确定的数据分析对象抽象出在数据分析中所需要的特征信息,然后选择合适的信息收集方法,将收集到的信息存入数据库。对于海量数据,选择一个合适的数据存储和管理的数据仓库是至关重要的。

(2)数据集成:把不同来源、格式、特点性质的数据在逻辑上或物理上有机地集中,从而为企业提供全面的数据共享。

(3)数据规约:执行多数的数据挖掘算法即使在少量数据上也需要很长的时间,而做商

业运营数据挖掘时往往数据量非常大。数据规约技术可以用来得到数据集的规约表示,它小得多,但仍然接近于保持原数据的完整性,并且规约后执行数据挖掘结果与规约前执行结果相同或几乎相同。

(4)数据清理:在数据库中的数据有一些是不完整罩坦丛的(有些感兴趣的属性缺少属性值),含噪声的(包含错误的属性值),并且是不一致的(同样的信息不同的表示方式),因此需要进行数据清理,将完整、正确、一致的数据信息存入数据仓物樱库中。不然,挖掘的结果会差强人意。

(5)数据变换:通过平滑聚集,数据概化,规范化等方式将数据转换成适用于数据挖掘的形式。对于有些实数型数据,通过概念分层和数据的离散化来转换数据也是重要的。

(6)数据挖掘过程:根据数据仓库中的数据信息,选择合适的分析工具,应用统计方法、事例推理、决策树、规则推理、模糊集信御、甚至神经网络、遗传算法的方法处理信息,得出有用的分析信息。

(7)模式评估:从商业角度,由行业专家来验证数据挖掘结果的正确性。

(8)知识表示:将数据挖掘所得到的分析信息以可视化的方式呈现给用户,或作为新的知识存放在知识库中,供其他应用程序使用。

数据挖掘怎么做啊什么是数据挖掘

数据挖掘租洞的做法和意思如下:

1、数据挖掘通常需要有信息收集、数据集成、数据规约、茄轿数据清理、数据变换、数据挖掘实施过程、模式评估和知识表示8个步骤。

2、数据挖弊纳枯掘是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。

数据挖掘有哪些步骤?

1、业务理解

业务理解,指从业务角度来理解项目目标和要求,接着把这些理解知识转换成数据挖掘问题的定义和实现目标的初规划。

2、数据理解

数据理解,指从数据收集开始,然后接着是一系列活动,这些活动的早物目的是:熟悉数据,甄别数据质量问题、发现对数据的真知灼见、或者探索出令人感兴趣的数据子集并形成对隐藏信息的假设。

3、数据准备

数据准备,指从初原始数据构建终建模数据的全部活动。数据准备很可能被执行多次并且不以任何既定的秩序进行。包括为建模工作准备数据的选择、转换、清洗、构造、整合及格式化等多种数据预处理工作。

4、建立模型

建立敬念模型,指选择和使用各种建模技术,并对其参数进行调优。一般地,相同数据挖亮睁困掘问题类型会有几种技术手段。某些技术对于数据形式有特殊规定,这通常需要重新返回到数据准备阶段。

数据挖掘的完整步骤是怎样的?

1、理解数据和数郑橡据的来源(understanding)。

2、获取相关知识与技术(acquisition)。

3、整合与检查数据(integration and checking)。

4、去除错误或不一致的数据(data cleaning)。

5、建立模型和假设(model and hypothesis development)。喊晌旁

6、实际数据挖掘工作(data mining)。

7、测试和验证挖掘结谨友果(testing and verification)。

8、解释和应用(interpretation and use)。

数据挖掘的七个步骤中哪一个最重要?为什么?

7个步骤地位不一样

若说最重升州要,当然是旁笑粗第一个, 定义问题

定义问题直接决定你后面使用的技术和方向。

后面很多步骤都是有现成方法工具去实运镇现的,不管是什么样的问题,所以还是第一个定义问题最重要!

关于数据挖掘的步骤和数据挖掘的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

标签列表