人工神经网络(人工神经网络的特点)

本篇文章给大家谈谈人工神经网络,以及人工神经网络的特点对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

人工神经网络综述

文章主要分为:

一、人工神经网络的概念;

二、人工神经网络的发展历史;

三、人工神经网络的特点;

四、人工神经网络的结构。

。。

人工神经网络(Artificial Neural Network,ANN)简称神经网络(NN),是基于生物学中神经网络的基本原理,在理解和抽象了人脑结构和外界刺激响应机制后,以网络拓扑知识为理论基础,模拟人脑的神经系统对复杂信息的处理机制的一种数学模型。该模型以并行分布的处理陆山能力、高容错性、智能化和自学习等能力为特征,将信息的加工和存储结合在一起,以其独特的知识表示方式和智能化的自适应学习能力,引起各学科领域的关注。它实际上是一个有大量简单元件相互连接而成的复杂网络,具有高度的非线性,能够进行复杂的逻辑操作和非线性关系实现的系统。

神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激活函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重(weight),神经网络就是通过这种方式来模拟人类的记忆。网络的输出则取决于网络的结构、网络的连接方式、权重和激活函数。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。神经网络的构筑理念是受到生物的神经网络运作启发而产生的。人工神经网络则是把对生物神经网络的认识与数学统计模型相结合,借助数学统计工具来实现。另一方面在人工智能学的人工感知领域,我们通过数学统计学的方法,使神经网络能够具备类似于人的决定能力和简单的判断能力,这种方法是对传统逻辑学演算的进一步延伸。

人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。人工神经网络是一种非程序化、适应性、大脑风格的信息处理,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。

神经网络,是一种应用类似于大脑神经突触连接结构进行信息处理的数学模型,它是在人类对自身大脑组织结合和思维机制的认识理解基础之上模拟出来的,它是根植于神经科学、数学、思维科学、人工智饥悉卖能、统计学、物理学、计算机科学以及工程科学的一门技术。

在介绍神经网络的发展历史之前,首先介绍一下神经网络的概念。神经网络主要烂逗是指一种仿造人脑设计的简化的计算模型,这种模型中包含了大量的用于计算的神经元,这些神经元之间会通过一些带有权重的连边以一种层次化的方式组织在一起。每一层的神经元之间可以进行大规模的并行计算,层与层之间进行消息的传递。

下图展示了整个神经网络的发展历程:

神经网络的发展有悠久的历史。其发展过程大致可以概括为如下4个阶段。

(1)、M-P神经网络模型:20世纪40年代,人们就开始了对神经网络的研究。1943 年,美国心理学家麦克洛奇(Mcculloch)和数学家皮兹(Pitts)提出了M-P模型,此模型比较简单,但是意义重大。在模型中,通过把神经元看作个功能逻辑器件来实现算法,从此开创了神经网络模型的理论研究。

(2)、Hebb规则:1949 年,心理学家赫布(Hebb)出版了《The Organization of Behavior》(行为组织学),他在书中提出了突触连接强度可变的假设。这个假设认为学习过程最终发生在神经元之间的突触部位,突触的连接强度随之突触前后神经元的活动而变化。这一假设发展成为后来神经网络中非常著名的Hebb规则。这一法则告诉人们,神经元之间突触的联系强度是可变的,这种可变性是学习和记忆的基础。Hebb法则为构造有学习功能的神经网络模型奠定了基础。

(3)、感知器模型:1957 年,罗森勃拉特(Rosenblatt)以M-P 模型为基础,提出了感知器(Perceptron)模型。感知器模型具有现代神经网络的基本原则,并且它的结构非常符合神经生理学。这是一个具有连续可调权值矢量的MP神经网络模型,经过训练可以达到对一定的输入矢量模式进行分类和识别的目的,它虽然比较简单,却是第一个真正意义上的神经网络。Rosenblatt 证明了两层感知器能够对输入进行分类,他还提出了带隐层处理元件的三层感知器这一重要的研究方向。Rosenblatt 的神经网络模型包含了一些现代神经计算机的基本原理,从而形成神经网络方法和技术的重大突破。

(4)、ADALINE网络模型: 1959年,美国著名工程师威德罗(B.Widrow)和霍夫(M.Hoff)等人提出了自适应线性元件(Adaptive linear element,简称Adaline)和Widrow-Hoff学习规则(又称最小均方差算法或称δ规则)的神经网络训练方法,并将其应用于实际工程,成为第一个用于解决实际问题的人工神经网络,促进了神经网络的研究应用和发展。ADALINE网络模型是一种连续取值的自适应线性神经元网络模型,可以用于自适应系统。

人工智能的创始人之一Minsky和Papert对以感知器为代表的网络系统的功能及局限性从数学上做了深入研究,于1969年发表了轰动一时《Perceptrons》一书,指出简单的线beautiful知器的功能是有限的,它无法解决线性不可分的两类样本的分类问题,如简单的线beautiful知器不可能实现“异或”的逻辑关系等。这一论断给当时人工神经元网络的研究带来沉重的打击。开始了神经网络发展史上长达10年的低潮期。

(1)、自组织神经网络SOM模型:1972年,芬兰的KohonenT.教授,提出了自组织神经网络SOM(Self-Organizing feature map)。后来的神经网络主要是根据KohonenT.的工作来实现的。SOM网络是一类无导师学习网络,主要用于模式识别﹑语音识别及分类问题。它采用一种“胜者为王”的竞争学习算法,与先前提出的感知器有很大的不同,同时它的学习训练方式是无指导训练,是一种自组织网络。这种学习训练方式往往是在不知道有哪些分类类型存在时,用作提取分类信息的一种训练。

(2)、自适应共振理论ART:1976年,美国Grossberg教授提出了著名的自适应共振理论ART(Adaptive Resonance Theory),其学习过程具有自组织和自稳定的特征。

(1)、Hopfield模型:1982年,美国物理学家霍普菲尔德(Hopfield)提出了一种离散神经网络,即离散Hopfield网络,从而有力地推动了神经网络的研究。在网络中,它首次将李雅普诺夫(Lyapunov)函数引入其中,后来的研究学者也将Lyapunov函数称为能量函数。证明了网络的稳定性。1984年,Hopfield 又提出了一种连续神经网络,将网络中神经元的激活函数由离散型改为连续型。1985 年,Hopfield和Tank利用Hopfield神经网络解决了著名的旅行推销商问题(Travelling Salesman Problem)。Hopfield神经网络是一组非线性微分方程。Hopfield的模型不仅对人工神经网络信息存储和提取功能进行了非线性数学概括,提出了动力方程和学习方程,还对网络算法提供了重要公式和参数,使人工神经网络的构造和学习有了理论指导,在Hopfield模型的影响下,大量学者又激发起研究神经网络的热情,积极投身于这一学术领域中。因为Hopfield 神经网络在众多方面具有巨大潜力,所以人们对神经网络的研究十分地重视,更多的人开始了研究神经网络,极大地推动了神经网络的发展。

(2)、Boltzmann机模型:1983年,Kirkpatrick等人认识到模拟退火算法可用于NP完全组合优化问题的求解,这种模拟高温物体退火过程来找寻全局最优解的方法最早由Metropli等人1953年提出的。1984年,Hinton与年轻学者Sejnowski等合作提出了大规模并行网络学习机,并明确提出隐单元的概念,这种学习机后来被称为Boltzmann机。

Hinton和Sejnowsky利用统计物理学的感念和方法,首次提出的多层网络的学习算法,称为Boltzmann 机模型。

(3)、BP神经网络模型:1986年,儒默哈特(D.E.Ru melhart)等人在多层神经网络模型的基础上,提出了多层神经网络权值修正的反向传播学习算法----BP算法(Error Back-Propagation),解决了多层前向神经网络的学习问题,证明了多层神经网络具有很强的学习能力,它可以完成许多学习任务,解决许多实际问题。

(4)、并行分布处理理论:1986年,由Rumelhart和McCkekkand主编的《Parallel Distributed Processing:Exploration in the Microstructures of Cognition》,该书中,他们建立了并行分布处理理论,主要致力于认知的微观研究,同时对具有非线性连续转移函数的多层前馈网络的误差反向传播算法即BP算法进行了详尽的分析,解决了长期以来没有权值调整有效算法的难题。可以求解感知机所不能解决的问题,回答了《Perceptrons》一书中关于神经网络局限性的问题,从实践上证实了人工神经网络有很强的运算能力。

(5)、细胞神经网络模型:1988年,Chua和Yang提出了细胞神经网络(CNN)模型,它是一个细胞自动机特性的大规模非线性计算机仿真系统。Kosko建立了双向联想存储模型(BAM),它具有非监督学习能力。

(6)、Darwinism模型:Edelman提出的Darwinism模型在90年代初产生了很大的影响,他建立了一种神经网络系统理论。

(7)、1988年,Linsker对感知机网络提出了新的自组织理论,并在Shanon信息论的基础上形成了最大互信息理论,从而点燃了基于NN的信息应用理论的光芒。

(8)、1988年,Broomhead和Lowe用径向基函数(Radialbasis function, RBF)提出分层网络的设计方法,从而将NN的设计与数值分析和线性适应滤波相挂钩。

(9)、1991年,Haken把协同引入神经网络,在他的理论框架中,他认为,认知过程是自发的,并断言模式识别过程即是模式形成过程。

(10)、1994年,廖晓昕关于细胞神经网络的数学理论与基础的提出,带来了这个领域新的进展。通过拓广神经网络的激活函数类,给出了更一般的时滞细胞神经网络(DCNN)、Hopfield神经网络(HNN)、双向联想记忆网络(BAM)模型。

(11)、90年代初,Vapnik等提出了支持向量机(Supportvector machines, SVM)和VC(Vapnik-Chervonenkis)维数的概念。

经过多年的发展,已有上百种的神经网络模型被提出。

深度学习(Deep Learning,DL)由Hinton等人于2006年提出,是机器学习的一个新领域。深度学习本质上是构建含有多隐层的机器学习架构模型,通过大规模数据进行训练,得到大量更具代表性的特征信息。深度学习算法打破了传统神经网络对层数的限制,可根据设计者需要选择网络层数。

突触是神经元之间相互连接的接口部分,即一个神经元的神经末梢与另一个神经元的树突相接触的交界面,位于神经元的神经末梢尾端。突触是轴突的终端。

大脑可视作为1000多亿神经元组成的神经网络。神经元的信息传递和处理是一种电化学活动.树突由于电化学作用接受外界的刺激,通过胞体内的活动体现为轴突电位,当轴突电位达到一定的值则形成神经脉冲或动作电位;再通过轴突末梢传递给其它的神经元.从控制论的观点来看;这一过程可以看作一个多输入单输出非线性系统的动态过程。

神经元的功能特性:(1)时空整合功能;(2)神经元的动态极化性;(3)兴奋与抑制状态;(4)结构的可塑性;(5)脉冲与电位信号的转换;(6)突触延期和不应期;(7)学习、遗忘和疲劳。

神经网络从两个方面模拟大脑:

(1)、神经网络获取的知识是从外界环境中学习得来的。

(2)、内部神经元的连接强度,即突触权值,用于储存获取的知识。

神经网络系统由能够处理人类大脑不同部分之间信息传递的由大量神经元连接形成的拓扑结构组成,依赖于这些庞大的神经元数目和它们之间的联系,人类的大脑能够收到输入的信息的刺激由分布式并行处理的神经元相互连接进行非线性映射处理,从而实现复杂的信息处理和推理任务。

对于某个处理单元(神经元)来说,假设来自其他处理单元(神经元)i的信息为Xi,它们与本处理单元的互相作用强度即连接权值为Wi, i=0,1,…,n-1,处理单元的内部阈值为θ。那么本处理单元(神经元)的输入为:

,而处理单元的输出为:

式中,xi为第i个元素的输入,wi为第i个处理单元与本处理单元的互联权重即神经元连接权值。f称为激活函数或作用函数,它决定节点(神经元)的输出。θ表示隐含层神经节点的阈值。

神经网络的主要工作是建立模型和确定权值,一般有前向型和反馈型两种网络结构。通常神经网络的学习和训练需要一组输入数据和输出数据对,选择网络模型和传递、训练函数后,神经网络计算得到输出结果,根据实际输出和期望输出之间的误差进行权值的修正,在网络进行判断的时候就只有输入数据而没有预期的输出结果。神经网络一个相当重要的能力是其网络能通过它的神经元权值和阈值的不断调整从环境中进行学习,直到网络的输出误差达到预期的结果,就认为网络训练结束。

对于这样一种多输入、单输出的基本单元可以进一步从生物化学、电生物学、数学等方面给出描述其功能的模型。利用大量神经元相互连接组成的人工神经网络,将显示出人脑的若干特征,人工神经网络也具有初步的自适应与自组织能力。在学习或训练过程中改变突触权重wij值,以适应周围环境的要求。同一网络因学习方式及内容不同可具有不同的功能。人工神经网络是一个具有学习能力的系统,可以发展知识,以至超过设计者原有的知识水平。通常,它的学习(或训练)方式可分为两种,一种是有监督(supervised)或称有导师的学习,这时利用给定的样本标准进行分类或模仿;另一种是无监督(unsupervised)学习或称无导师学习,这时,只规定学习方式或某些规则,而具体的学习内容随系统所处环境(即输入信号情况)而异,系统可以自动发现环境特征和规律性,具有更近似于人脑的功能。

在人工神经网络设计及应用研究中,通常需要考虑三个方面的内容,即神经元激活函数、神经元之间的连接形式和网络的学习(训练)。

人工神经网络(ANN)简述

我们从下面四点认识人工神经网络(ANN: Artificial Neutral Network):神经元结构、神经元的激活函数、神经网络拓扑结构、神经网络选择权值和学习算法。

1. 神经元:

我们先来看一组对比图就能了解是怎样从生物神经元建模为人工神经元。

下面分别讲述:

生物神经元的组成包括细胞体、树突、轴突、突触。树突可以看作输入端,接收从其他细胞传递过来的电信号;轴突可以看作输出端,传递电荷给其他细胞;突触可手瞎以看作I/O接口,连接神经元,单个神经元可以和上千个神经元连接。细胞体内有膜电位,从外界传递过来的电流使膜电位发生变化,并且不断累加,当膜电位升高到超过一个阈值时,神经元被激活,产生一个脉冲,传递到下一个神经元。

为了更形象理解神经元传递信号过程,把一个神经元比作一个水桶。水桶下侧连着多根水管(树突),水管既可以把桶里的水排出去(抑制性),又可以将其他水桶的水输进来(兴奋性),水管的粗细不同,对桶中水的影响程度不同(权重),水管对水桶水位(膜电位)的改变就是水桶内水位的改变,当桶中水达到一定高度时,就能通过另一条管道(轴突)排出去。

按照这个原理,科学家提出了M-P模型(取自两个提出者的姓名首字母),M-P模型是对生物神经元的建模,作为人工神经网络中的一个神经元。

由MP模型的示意图,我们可以看到与生物神经元的相似之处,x_i表示多个输入,W_ij表示每个输入的权值,其正负模拟了生物神经元中突出的兴奋和抑制;sigma表示将全部输入信号进行累加整合,f为激活函数,O为输出。下图可以看到生物神经元和MP模型的类比:

往后诞生的各种神经元模型都是由MP模型演变过来。

2. 激活函数

激活函数可以看作滤波器,接收外界各种各样的信号,通过调整函数,输出期望值。ANN通常采用三类激活函数:阈值穗州函数、分段函数、双极性连续函数(sigmoid,tanh):

3. 学习算法

神经网络的学习也称为训练,通过神经网络所在环境的刺激作用调整神经网络的自由参数(如连接权值),使神经网络以一种新的方式对外部环境做出反应的一个过程。每个神经网络都有一个激活函数y=f(x),训练过程就是通过给定的海量x数据和y数据,拟合出激活函数f。学习过程分为有导师学习和无导师学习,有导师学习是给定猜薯蔽期望输出,通过对权值的调整使实际输出逼近期望输出;无导师学习给定表示方法质量的测量尺度,根据该尺度来优化参数。常见的有Hebb学习、纠错学习、基于记忆学习、随机学习、竞争学习。

4. 神经网络拓扑结构

常见的拓扑结构有单层前向网络、多层前向网络、反馈网络,随机神经网络、竞争神经网络。

5. 神经网络的发展

(不能贴公式不好解释啊 -_-!)sigma是误差信号,yita是学习率,net是输入之和,V是输入层到隐含层的权重矩阵,W是隐含层到输出层的权重矩阵。

之后还有几种

随着计算机硬件计算能力越来越强,用来训练的数据越来越多,神经网络变得越来越复杂。在人工智能领域常听到DNN(深度神经网络)、CNN(卷积神经网络)、RNN(递归神经网络)。其中,DNN是总称,指层数非常多的网络,通常有二十几层,具体可以是CNN或RNN等网络结构。

参考资料 :

[img]

人工神经网络,人工神经网络是什么意思

一、 人工神经网络的概念

人工神经网络(Artificial Neural Network,ANN)简称神经网络(NN),是基于生物学中神经网络的基本原理,在理解和抽象了人脑结构和外界刺激响应机制后,以网络拓扑知识为理论基础,模拟人脑的神经系统对复杂信息的处理机制的一种数学模型。该模型以并行分布的处理能力、高容错性、智能化和自学习等能力为特征,将信息的加工和存储结合在一起,以其独特的知识表示方式和智能化的自适应学习能力,引起各学科领域的关注。它实际上是一个有大量简单元件相互连接而成的复杂网络,具有高度的非线性,能够进行复杂的逻辑操作和非线性关系实现的系统。

神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激活函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重(weight),神经网络就是通过这种方式来模拟人类的记忆。网络的输出则取决于网络的结构、网络的连接方式、权重和激活函数。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。神经网络的构筑理念是受到生物的神经网络运作启发而产生的。人工神经网络则是把对生物神经网络的认识与数学统计模型相结合,借助数学统计工具来实现。另一方面在人工智能学的人工感知领域,我们通过数学统计学的方法,使神经网络能够具备类似于人的决定能力和简单的判断能力,这种方法是对传统逻辑学演算的进一步延伸。

人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。输入单元接受外部世界的袜激梁信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。人工神经网络是一种非程序化、适应性、大脑风格的信息处理,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。

神经网络,是一种应用类似于大脑神经突触连接结构进行信息处理的数学模型,它是在人类对自身大脑组织结合和思维机制的认识理解基础之上模拟出来的,它是根植于神经科学、数学、思维科学、人工智能、统计学、物理学、计算机科学以及工程科学的一门技术。

二、 人工神经网络的发展

神告运经网络的发展有悠久的历史。其发展过程大致可以概括为如下4个阶段。

1. 第一阶段----启蒙时期

(1)、M-P神经网络模型:20世纪40年代,人们就开始了对神经网络的研究。1943 年,美国心理学家麦克洛奇(Mcculloch)和数学家皮兹(Pitts)提出了M-P模型,此模型比较简单,但是意义重大。在模型中,通过把神经元看作个功能逻辑器件来实现算法,从此开创了神经网络模型的理论研究。

(2)、Hebb规则:1949 年,心理学家赫布(Hebb)出版了《The Organization of Behavior》(行为组织学),他在书中提出了突触连接强度可变的假设。这个假设认为学习过程最终发生在神经元之间的突触部位,突触的连接强度随之突触前后神经元的活动而变化。这一假设发展成为后来神经网络中非常著名的Hebb规则。这一法则告诉人们,神经元之间突触的联系强度是可变的,这种可变性是学习和记忆的基础。Hebb法则为构造有学习功能的神经网络模型奠定了基础。

(3)、感知器模型:1957 年,罗森勃拉特(Rosenblatt)以M-P 模型为基础,提出了感知器(Perceptron)模型。感知器模型具有现代神经网络的基本原则,并且它的结构非常符合神经生理学。这是一个具有连续可调权值矢量的MP神经网络模型,铅陪经过训练可以达到对一定的输入矢量模式进行分类和识别的目的,它虽然比较简单,却是第一个真正意义上的神经网络。Rosenblatt 证明了两层感知器能够对输入进行分类,他还提出了带隐层处理元件的三层感知器这一重要的研究方向。Rosenblatt 的神经网络模型包含了一些现代神经计算机的基本原理,从而形成神经网络方法和技术的重大突破。

(4)、ADALINE网络模型: 1959年,美国著名工程师威德罗(B.Widrow)和霍夫(M.Hoff)等人提出了自适应线性元件(Adaptive linear element,简称Adaline)和Widrow-Hoff学习规则(又称最小均方差算法或称δ规则)的神经网络训练方法,并将其应用于实际工程,成为第一个用于解决实际问题的人工神经网络,促进了神经网络的研究应用和发展。ADALINE网络模型是一种连续取值的自适应线性神经元网络模型,可以用于自适应系统。

2. 第二阶段----低潮时期

人工智能的创始人之一Minsky和Papert对以感知器为代表的网络系统的功能及局限性从数学上做了深入研究,于1969年发表了轰动一时《Perceptrons》一书,指出简单的线beautiful知器的功能是有限的,它无法解决线性不可分的两类样本的分类问题,如简单的线beautiful知器不可能实现“异或”的逻辑关系等。这一论断给当时人工神经元网络的研究带来沉重的打击。开始了神经网络发展史上长达10年的低潮期。

(1)、自组织神经网络SOM模型:1972年,芬兰的KohonenT.教授,提出了自组织神经网络SOM(Self-Organizing feature map)。后来的神经网络主要是根据KohonenT.的工作来实现的。SOM网络是一类无导师学习网络,主要用于模式识别﹑语音识别及分类问题。它采用一种“胜者为王”的竞争学习算法,与先前提出的感知器有很大的不同,同时它的学习训练方式是无指导训练,是一种自组织网络。这种学习训练方式往往是在不知道有哪些分类类型存在时,用作提取分类信息的一种训练。

(2)、自适应共振理论ART:1976年,美国Grossberg教授提出了著名的自适应共振理论ART(Adaptive Resonance Theory),其学习过程具有自组织和自稳定的特征。

3. 第三阶段----复兴时期

(1)、Hopfield模型:1982年,美国物理学家霍普菲尔德(Hopfield)提出了一种离散神经网络,即离散Hopfield网络,从而有力地推动了神经网络的研究。在网络中,它首次将李雅普诺夫(Lyapunov)函数引入其中,后来的研究学者也将Lyapunov函数称为能量函数。证明了网络的稳定性。1984年,Hopfield 又提出了一种连续神经网络,将网络中神经元的激活函数由离散型改为连续型。1985 年,Hopfield和Tank利用Hopfield神经网络解决了著名的旅行推销商问题(Travelling Salesman Problem)。Hopfield神经网络是一组非线性微分方程。Hopfield的模型不仅对人工神经网络信息存储和提取功能进行了非线性数学概括,提出了动力方程和学习方程,还对网络算法提供了重要公式和参数,使人工神经网络的构造和学习有了理论指导,在Hopfield模型的影响下,大量学者又激发起研究神经网络的热情,积极投身于这一学术领域中。因为Hopfield 神经网络在众多方面具有巨大潜力,所以人们对神经网络的研究十分地重视,更多的人开始了研究神经网络,极大地推动了神经网络的发展。

(2)、Boltzmann机模型:1983年,Kirkpatrick等人认识到模拟退火算法可用于NP完全组合优化问题的求解,这种模拟高温物体退火过程来找寻全局最优解的方法最早由Metropli等人1953年提出的。1984年,Hinton与年轻学者Sejnowski等合作提出了大规模并行网络学习机,并明确提出隐单元的概念,这种学习机后来被称为Boltzmann机。

Hinton和Sejnowsky利用统计物理学的感念和方法,首次提出的多层网络的学习算法,称为Boltzmann 机模型。

(3)、BP神经网络模型:1986年,儒默哈特(D.E.Ru melhart)等人在多层神经网络模型的基础上,提出了多层神经网络权值修正的反向传播学习算法----BP算法(Error Back-Propagation),解决了多层前向神经网络的学习问题,证明了多层神经网络具有很强的学习能力,它可以完成许多学习任务,解决许多实际问题。

(4)、并行分布处理理论:1986年,由Rumelhart和McCkekkand主编的《Parallel Distributed Processing:Exploration in the Microstructures of Cognition》,该书中,他们建立了并行分布处理理论,主要致力于认知的微观研究,同时对具有非线性连续转移函数的多层前馈网络的误差反向传播算法即BP算法进行了详尽的分析,解决了长期以来没有权值调整有效算法的难题。可以求解感知机所不能解决的问题,回答了《Perceptrons》一书中关于神经网络局限性的问题,从实践上证实了人工神经网络有很强的运算能力。

(5)、细胞神经网络模型:1988年,Chua和Yang提出了细胞神经网络(CNN)模型,它是一个细胞自动机特性的大规模非线性计算机仿真系统。Kosko建立了双向联想存储模型(BAM),它具有非监督学习能力。

(6)、Darwinism模型:Edelman提出的Darwinism模型在90年代初产生了很大的影响,他建立了一种神经网络系统理论。

(7)、1988年,Linsker对感知机网络提出了新的自组织理论,并在Shanon信息论的基础上形成了最大互信息理论,从而点燃了基于NN的信息应用理论的光芒。

(8)、1988年,Broomhead和Lowe用径向基函数(Radialbasis function, RBF)提出分层网络的设计方法,从而将NN的设计与数值分析和线性适应滤波相挂钩。

(9)、1991年,Haken把协同引入神经网络,在他的理论框架中,他认为,认知过程是自发的,并断言模式识别过程即是模式形成过程。

(10)、1994年,廖晓昕关于细胞神经网络的数学理论与基础的提出,带来了这个领域新的进展。通过拓广神经网络的激活函数类,给出了更一般的时滞细胞神经网络(DCNN)、Hopfield神经网络(HNN)、双向联想记忆网络(BAM)模型。

(11)、90年代初,Vapnik等提出了支持向量机(Supportvector machines, SVM)和VC(Vapnik-Chervonenkis)维数的概念。

经过多年的发展,已有上百种的神经网络模型被提出。

什么是人工神经网络

人工神经网络(Artificial Neural Network,即ANN ),是20世纪脊蠢80 年代以来人工智能领域兴起的研究热点。樱李陪它从信息处理角度对人脑神经元网络进行抽象, 建扰乱立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。最近十多年来,人工神经网络的研究工作不断深入,已经取得了很大的进展,其在模式识别、智能机器人、自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。

人工智能:什么是人工神经网络?

许多 人工智能 计算机系统的核心技术是人工神经网络(ANN),而这种网络的灵感来源于人类大脑中的生物结构。

通过使用连接的“神经元”结构,这些网络可以通过“学习”并在没有人类参与的情况下处理和评估某些数据。

这样的实际实例之一是使用人工神经网络(ANN)识别图像中的对象。在构建一个识别“猫“图像的一个系统中,将在包含标记为“猫”的图像的数据集上训练人工神经网络,该数据集可用作任何进行分析的参考点。正如人们可能学会根据尾巴或皮毛等独特特征来识别狗一样,人工神经网络(ANN)也可以通过将每个图像分解成不同的组成部分(如颜色和形状)进行识别。

实际上,神经网络提供了位于托管数据之上的排序和分类级别,可基于相似度来辅助数据的聚类和分组。可以使用人工神经网络(ANN)生成复杂的垃圾邮件过滤器,查找欺诈行为的算法以及可以精确了解情绪的客户关系工具。

人工神经网络如何工作

人工神经网络的灵感来自人脑的神经组织,使用类似于神经元的计算节点构造而成,这些节点沿着通道(如神经突触的工作方式)进行信息交互。这意味着一个计算节点的输出将影响另一个计算节点的处理。

神经网络标志着人工智能发展的巨大飞跃,在此之前,人工智能一直依赖于使用预定义的过程和定期的人工干预来产生所需的结果。人工神经网络可以使分析负载分布在多个互连层的网络中,每个互连层包含互连节点。在处理信息并对其进行场景处理之后,信息将传递到下一个节点,然后向下传递到各个层。这个想法是允许将其他场景信息接入网络,以通知每个阶段的处理。

单个“隐藏”层神经网络的基本结构

就像渔网的结构一样,神经网络的一个单层使用链将差槐乎处理节点连接在一起。大量的连接使这些节点之间的通信得到增强,从而提高了准确性和数据处理吞吐量。

然后,人工神经网络将许多这样的层相互叠放以分析数据,从而创建从第一层到最后一层的输入和输出数据流。尽管其层数将根据人工神经网络的性质及其任务而变化,但其想法是将数据从一层传递到另一层,并随其添加附加的场景信息。

人脑是用3D矩阵连接起明凯来的,而不是大量堆叠的图层。就像人类大脑一样,节点在接收到特定刺激时会在人工神经网络上“发射”信号,并将信号传递到另一个节点。但是,对于人工神经网络,输入信号定义为实数,输出为各种输入的总和。

这些输入的值取决于它们的权重,该权重用于增加或减少与正在执行的任务相对应的输入数据的重要性。其目标是采用任意数量的二进制数值输入并将其转换为单个二进制数值输出。

更复杂的神经网络提高了数据分析的复杂性

早期的神经网络模型使用浅层结构,其中只使用一个输入和输出层。而现代的系统由一个输入层和一个输出层组成,其中输入层首先将数据输入网络,多个“隐藏”层增加了数据分析的复杂性。

这就是“深度学习”一词的由来——“深度”部分专门指任何使用多个“隐藏”层的神经网络。

聚会的例子

为了说明人工神经网络在实际中是如何工作的,我们将其简化虚悉为一个实际示例。

想象一下你被邀请参加一个聚会,而你正在决定是否参加,这可能需要权衡利弊,并将各种因素纳入决策过程。在此示例中,只选择三个因素——“我的朋友会去吗?”、“聚会地点远吗?”、“天气会好吗?”

通过将这些考虑因素转换为二进制数值,可以使用人工神经网络对该过程进行建模。例如,我们可以为“天气”指定一个二进制数值,即‘1'代表晴天,‘0'代表恶劣天气。每个决定因素将重复相同的格式。

然而,仅仅赋值是不够的,因为这不能帮助你做出决定。为此需要定义一个阈值,即积极因素的数量超过消极因素的数量。根据二进制数值,合适的阈值可以是“2”。换句话说,在决定参加聚会之前,需要两个因素的阈值都是“1”,你才会决定去参加聚会。如果你的朋友要参加聚会(‘1'),并且天气很好(‘1'),那么这就表示你可以参加聚会。

如果天气不好(‘0'),并且聚会地点很远(‘0'),则达不到这一阈值,即使你的朋友参加(‘1'),你也不会参加聚会。

神经加权

诚然,这是神经网络基本原理的一个非常基本的例子,但希望它有助于突出二进制值和阈值的概念。然而,决策过程要比这个例子复杂得多,而且通常情况下,一个因素比另一个因素对决策过程的影响更大。

要创建这种变化,可以使用“神经加权”——-通过乘以因素的权重来确定因素的二进制值对其他因素的重要性。

尽管示例中的每个注意事项都可能使你难以决策,但你可能会更重视其中一个或两个因素。如果你不愿意在大雨中出行去聚会,那恶劣的天气将会超过其他两个考虑因素。在这一示例中,可以通过赋予更高的权重来更加重视天气因素的二进制值:

天气= w5

朋友= w2

距离= w2

如果假设阈值现在已设置为6,则恶劣的天气(值为0)将阻止其余输入达到所需的阈值,因此该节点将不会“触发”(这意味着你将决定不参加聚会)。

虽然这是一个简单的示例,但它提供了基于提供的权重做出决策的概述。如果要将其推断为图像识别系统,则是否参加聚会(输入)的各种考虑因素将是给定图像的折衷特征,即颜色、大小或形状。例如,对识别狗进行训练的系统可以对形状或颜色赋予更大的权重。

当神经网络处于训练状态时,权重和阈值将设置为随机值。然后,当训练数据通过网络传递时将不断进行调整,直到获得一致的输出为止。

神经网络的好处

神经网络可以有机地学习。也就是说,神经网络的输出结果并不受输入数据的完全限制。人工神经网络可以概括输入数据,使其在模式识别系统中具有价值。

他们还可以找到实现计算密集型答案的捷径。人工神经网络可以推断数据点之间的关系,而不是期望数据源中的记录是明确关联的。

它们也可以是容错的。当神经网络扩展到多个系统时,它们可以绕过无法通信的缺失节点。除了围绕网络中不再起作用的部分进行路由之外,人工神经网络还可以通过推理重新生成数据,并帮助确定不起作用的节点。这对于网络的自诊断和调试非常有用。

但是,深度神经网络提供的最大优势是能够处理和聚类非结构化数据,例如图片、音频文件、视频、文本、数字等数据。在分析层次结构中,每一层节点都在前一层的输出上进行训练,深层神经网络能够处理大量的这种非结构化数据,以便在人类处理分析之前找到相似之处。

神经网络的例子

神经网络应用还有许多示例,可以利用它从复杂或不精确数据中获得见解的能力。

图像识别人工神经网络可以解决诸如分析特定物体的照片等问题。这种算法可以用来区分狗和猫。更重要的是,神经网络已经被用于只使用细胞形状信息来诊断癌症。

近30年来,金融神经网络被用于汇率预测、股票表现和选择预测。神经网络也被用来确定贷款信用评分,学习正确识别良好的或糟糕的信用风险。而电信神经网络已被电信公司用于通过实时评估网络流量来优化路由和服务质量。

关于人工神经网络和人工神经网络的特点的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

标签列表