spark介绍(spark有什么用)

本篇文章给大家谈谈spark介绍,以及spark有什么用对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

大疆晓Spark的介绍 有哪些特色?

1、看一下大疆晓Spark无人机的正面

2、将大疆晓Spark无人机转到后边

3、转到多功能手柄键弯

4、来看一下多功能手柄的正面照举棚

5、大疆稿答闷晓Spark无人机的护翼架

6、大疆晓Spark无人机支持手机互联

[img]

spark几种部署模式,每种模式特点及搭建

下面对集中部署模式进行详细介绍

该模式运行任务不会提交在集群中,只在本节点执行,有两种情况

运行该模式非常简单,只需要把Spark的安装包解压后,改一些常用的配置即可使用,而不用启动Spark的Master、Worker守护进程( 只有集群的Standalone方式时,州拿才需要这两个角色),也不用启册喊搭动Hadoop的各服务(除非你要用到HDFS)。

Spark不一定非要跑在hadoop集群,可以在本地,起多个线程的方式来指定。将Spark应用以多线程的方式直接运行在本地,一般都是为了方便调试,本地单机模式分三类:

搭建步骤:

(中间有报错:raise IllegalArgumentException(s.split(': ', 1)[1], stackTrace)

pyspark.sql.utils.IllegalArgumentException: u'Unable to locate hive jars to connect to metastore. Please set spark.sql.hive.metastore.jars.',网上提示查看jdk版本,发现ubuntu 18.04默认是openjdk-11-jdk包(java -version提示10.0.1)。重新安装openjdk-8-jdk版本不报错)

运行:

使用spark-shell、spark-submit、pyspark

例如使用spark-shell:

local:单机、单核运行

local[k]:启动k个executor

local[ ]:启动跟cpu数目相同的 executor*

上述情况中,local[N]与local[*]相当于用单机的多个线程来模拟spark分布式计算,通常用来检验开发出来的程序逻辑上有渗槐没有问题。

其中N代表可以使用N个线程,每个线程拥有一个core。

这些任务的线程,共享在一个进程中,可以开到,在程序的执行过程中只会产生一个进程,这个进程揽下了所有的任务,既是客户提交任务的client进程,又是spark的driver程序,还是spark执行task的executor

这种运行模式,和Local[N]很像,不同的是,它会在单机启动多个进程来模拟集群下的分布式场景,而不像Local[N]这种多个线程只能在一个进程下委屈求全的共享资源。通常也是用来验证开发出来的应用程序逻辑上有没有问题,或者想使用Spark的计算框架而没有太多资源。

用法:提交应用程序时使用local-cluster[x,y,z]参数:x代表要生成的executor数,y和z分别代表每个executor所拥有的core和memory数。

上面这条命令代表会使用2个executor进程,每个进程分配3个core和1G的内存,来运行应用程序。可以看到,在程序执行过程中,会生成如下几个进程:

Spark的四种运行模式

介绍

本地模式

Spark单机运行,一般用于开发测试。

Standalone模式

构建一个由Master+Slave构成的Spark集群,Spark运行在集群中。

Spark on Yarn模式

Spark客户端直接连接Yarn。不需要额外构建Spark集群。

Spark on Mesos模式

Spark客户端直接连接Mesos。不需要额外构建Spark集群。

启动方式: spark-shell.sh(Scala)

spark-shell通过不同的参数控制采用何种模式进行。 涉及两个参数:羡汪

对于Spark on Yarn模式和Spark on Mesos模衡纯式还可以通过 –deploy-mode参数控制Drivers程序的启动位置。

进入本地模式:

进入Standalone模式:

备注:测兄拦仔试发现MASTER_URL中使用主机名替代IP地址无法正常连接(hosts中有相关解析记录),即以下命令连接不成功:

./spark-shell --master spark://ctrl:7077 # 连接失败

Spark on Yarn模式

备注:Yarn的连接信息在Hadoop客户端的配置文件中指定。通过spark-env.sh中的环境变量HADOOPCONFDIR指定Hadoop配置文件路径。

Spark on Mesos模式:

启动方式: pyspark(Python)

参数及用法与Scala语言的spark-shell相同,比如:

apache spark是什么意思?

n.火花燃做敬;火星;电火花;(指皮慎品质或感情)一星,丝毫,一丁胡裂点。

averysmallburningpieceofmaterialthatisproducedbysththatisburningorbyhittingtwohardsubstancestogether。

Asparkisatinybrightpieceofburningmaterialthatfliesupfromsomethingthatisburning.

Asparkofaqualityorfeeling,especiallyadesirableone,isasmallbutnoticeableamountofit.一站式出国留学攻略

Spark原理 | 内存管理

Spark作为一个基于内存的分布式计算引擎,其内存管理模块在整个系统中扮演着非常重要的角色。

在执行Spark的应用程序时,Spark集群会启动Driver和Executor两种JVM进程:

Spark管理的内存主要划分为4个区域:

Executor作为一个JVM进程,它的内存管理建立在JVM的内存管理之判嫌世上,Spark对JVM的堆内(On-heap)空间进行了更为详细的分配,以充分利用内存。同时,Spark引入了堆外(Off-heap)内存,使之可以直接在工作节点的系统内存中开辟空间,进一步优化了内存的使用。

堆内内存的大小,由 Spark 应用程序启动时的 executor-memory 或 spark.executor.memory 参数配置。Executor 内运行的并发任务共享 JVM 堆内内存,这些任务在缓存 RDD 数据和广播(Broadcast)数据时占用的内存被规划为存储(Storage)内存,而这些任务在执行 Shuffle 时占用的内存被规划为执行(Execution)内存,剩余的部分不做特殊规划,那些 Spark 内部的对象实例,或者用户定义的 Spark 应用程序中的对象实例,均占用剩余的空间。不同的管理模式下,这三部分占用的空间大小各不相同。

Spark 对堆内内存的管理是一种逻辑上的"规划式"的管理,因为对象实例占用内存的申请和释放都由 JVM 完成,Spark 只能在申请后和释放前记录这些内存,我们来看其具体流程:

为了进一步优化内存的使用以及提高 Shuffle 时排序的效率,Spark 引入了堆外(Off-heap)内存,使之可以直接在工作节点的系统内存中开辟空间,存储经过序列化的二进制数据。利用 JDK Unsafe API(从 Spark 2.0 开始)者老,在管理堆外的存储内存时不再基于 Tachyon,而是与堆外的执行内存一样,基于 JDK Unsafe API 实现,Spark 可以直接操作系统堆外内存,减少了不必要的内存开销,以及频繁的 GC 扫描和回收,提升了处理性能。堆外内存可以被精确地申请和释放,而且序列化的数据占用的空间可以被精确计算,所以相比堆内内存来说降低了管理的难度,也降低了误差。

在默认情况下堆外内存并不启用,可通过配置 spark.memory.offHeap.enabled 参数启用,并由 spark.memory.offHeap.size 参数设定堆外空间的大小。除了没有 other 空间,堆外内存与堆内内存的划分方式相同,所有运行中的并发任务共享存储内存和执行内存。

Spark 1.6 之后默认为统一管理(UnifiedMemoryManager)方式,1.6 之前采用的静态管理(StaticMemoryManager)方式仍被保留,可通过配置 spark.memory.useLegacyMode=true 参数启用静态掘肢内存管理方式。下面我们介绍下两种内存管理模型的进化。

在 Spark 最初采用的静态内存管理机制下,存储内存、执行内存和其他内存的大小在 Spark 应用程序运行期间均为固定的,但用户可以应用程序启动前进行配置,堆内内存的分配如下所示:

Spark 1.6 之后引入的统一内存管理机制,与静态内存管理的区别在于存储内存和执行内存共享同一块空间,可以动态占用对方的空闲区域。如下图所示:

其中最重要的优化在于动态占用机制,其规则如下:

新的版本引入了新的配置项:

凭借统一内存管理机制,Spark 在一定程度上提高了堆内和堆外内存资源的利用率,降低了开发者维护 Spark 内存的难度,但并不意味着开发者可以高枕无忧。譬如,所以如果存储内存的空间太大或者说缓存的数据过多,反而会导致频繁的全量垃圾回收,降低任务执行时的性能,因为缓存的 RDD 数据通常都是长期驻留内存的。所以要想充分发挥 Spark 的性能,需要开发者进一步了解存储内存和执行内存各自的管理方式和实现原理。

关于spark介绍和spark有什么用的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

标签列表