echartsaxispointer的简单介绍

本篇文章给大家谈谈echartsaxispointer,以及对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

pyecharts折线图进阶篇

import   pyecharts.options   as    opts

from    pyecharts.charts    import  Line

x=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']

y=[100,200,300,400,500,400,300]

line=(

Line()

.set_global_opts(

tooltip_opts=opts.TooltipOpts(is_show=False),

xaxis_opts=opts.AxisOpts(type_="category"),

yaxis_opts=opts.AxisOpts(

type_="value",

axistick_opts=opts.AxisTickOpts(is_show=True),

splitline_opts=opts.SplitLineOpts(is_show=True),

),

)

.add_xaxis(xaxis_data=x)

.add_yaxis(

series_name="基本折线图",

y_axis=y,

symbol="emptyCircle",

is_symbol_show=True,

label_opts=opts.LabelOpts(is_show=False),

)

)

line.render_notebook()

series_name:图形名称

 y_axis:数据 

symbol:标记的图形,

pyecharts提供的类型包括'circle','rect','roundRect','triangle','diamond','pin','arrow','none',也可以通过'image://url'设置为图片,其中 URL 为图片的链接。is_symbol_show:是否显示 symbol

有时候我们要分析的数据存在空缺值,需要进行处理才能画出折线图

import   pyecharts.options   如此 as   opts

from    pyecharts.charts   import   举配Line

x=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']

y=[100,200,300,400,None,400,300]

line=(

Line()

.add_xaxis(xaxis_data=x)

.add_yaxis(

series_name="连接空数据(折线图)",

y_axis=y,

)

.set_global_opts(title_opts=opts.TitleOpts(title="Line-连接空数据"))

)

line.render_notebook()

import    pyecharts.options   as   opts

from    pyecharts.charts    import   渣答迅Line

x=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']

y1=[100,200,300,400,100,400,300]

y2=[200,300,200,100,200,300,400]

line=(

Line()

.add_xaxis(xaxis_data=x)

.add_yaxis(series_name="y1线",y_axis=y1,symbol="arrow",is_symbol_show=True)

.add_yaxis(series_name="y2线",y_axis=y2)

.set_global_opts(title_opts=opts.TitleOpts(title="Line-多折线重叠"))

)

line.render_notebook()

import   pyecharts.options   as   opts

from   pyecharts.charts   import   Line

x=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']

y1=[100,200,300,400,100,400,300]

y2=[200,300,200,100,200,300,400]

line=(

Line()

.add_xaxis(xaxis_data=x)

.add_yaxis(series_name="y1线",y_axis=y1, is_smooth=True)

.add_yaxis(series_name="y2线",y_axis=y2, is_smooth=True)

.set_global_opts(title_opts=opts.TitleOpts(title="Line-多折线重叠"))

)

line.render_notebook()

import   pyecharts.options   as   opts

from    pyecharts.charts   import   Line

x=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']

y1=[100,200,300,400,100,400,300]

line=(

Line()

.add_xaxis(xaxis_data=x)

.add_yaxis(series_name="y1线",y_axis=y1, is_step=True)

.set_global_opts(title_opts=opts.TitleOpts(title="Line-阶梯图"))

)

line.render_notebook()

is_step:阶梯图参数

import   pyecharts.options   as   opts

from   pyecharts.charts   import   Line

from    pyecharts.faker   import   Faker

x=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']

y1=[100,200,300,400,100,400,300]

line = (

Line()

.add_xaxis(xaxis_data=x)

.add_yaxis(

"y1",

y1,

symbol="triangle",

symbol_size=30,

linestyle_opts=opts.LineStyleOpts(color="red", width=4, type_="dashed"),

itemstyle_opts=opts.ItemStyleOpts(

border_width=3, border_color="yellow", color="blue"

),

)

.set_global_opts(title_opts=opts.TitleOpts(title="Line-ItemStyle"))

)

line.render_notebook()

linestyle_opts:折线样式配置color设置颜色,width设置宽度type设置类型,有'solid','dashed','dotted'三种类型 itemstyle_opts:图元样式配置,border_width设置描边宽度,border_color设置描边颜色,color设置纹理填充颜色

import   pyecharts.options  as   opts

from   pyecharts.charts   import   Line

x=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']

y1=[100,200,300,400,100,400,300]

y2=[200,300,200,100,200,300,400]

line=(

Line()

.add_xaxis(xaxis_data=x)

.add_yaxis(series_name="y1线",y_axis=y1,areastyle_opts=opts.AreaStyleOpts(opacity=0.5))

.add_yaxis(series_name="y2线",y_axis=y2,areastyle_opts=opts.AreaStyleOpts(opacity=0.5))

.set_global_opts(title_opts=opts.TitleOpts(title="Line-多折线重叠"))

)

line.render_notebook()

import    pyecharts.options   as   opts

from    pyecharts.charts   import   Line

from    pyecharts.commons.utils   import   JsCode

js_formatter ="""function (params) {

console.log(params);

return '降水量  ' + params.value + (params.seriesData.length ? ':' + params.seriesData[0].data : '');

}"""

line=(

Line()

.add_xaxis(

xaxis_data=[

"2016-1",

"2016-2",

"2016-3",

"2016-4",

"2016-5",

"2016-6",

"2016-7",

"2016-8",

"2016-9",

"2016-10",

"2016-11",

"2016-12",

]

)

.extend_axis(

xaxis_data=[

"2015-1",

"2015-2",

"2015-3",

"2015-4",

"2015-5",

"2015-6",

"2015-7",

"2015-8",

"2015-9",

"2015-10",

"2015-11",

"2015-12",

],

xaxis=opts.AxisOpts(

type_="category",

axistick_opts=opts.AxisTickOpts(is_align_with_label=True),

axisline_opts=opts.AxisLineOpts(

is_on_zero=False, linestyle_opts=opts.LineStyleOpts(color="#6e9ef1")

),

axispointer_opts=opts.AxisPointerOpts(

is_show=True, label=opts.LabelOpts(formatter=JsCode(js_formatter))

),

),

)

.add_yaxis(

series_name="2015 降水量",

is_smooth=True,

symbol="emptyCircle",

is_symbol_show=False,

color="#d14a61",

y_axis=[2.6,5.9,9.0,26.4,28.7,70.7,175.6,182.2,48.7,18.8,6.0,2.3],

label_opts=opts.LabelOpts(is_show=False),

linestyle_opts=opts.LineStyleOpts(width=2),

)

.add_yaxis(

series_name="2016 降水量",

is_smooth=True,

symbol="emptyCircle",

is_symbol_show=False,

color="#6e9ef1",

y_axis=[3.9,5.9,11.1,18.7,48.3,69.2,231.6,46.6,55.4,18.4,10.3,0.7],

label_opts=opts.LabelOpts(is_show=False),

linestyle_opts=opts.LineStyleOpts(width=2),

)

.set_global_opts(

legend_opts=opts.LegendOpts(),

tooltip_opts=opts.TooltipOpts(trigger="none", axis_pointer_type="cross"),

xaxis_opts=opts.AxisOpts(

type_="category",

axistick_opts=opts.AxisTickOpts(is_align_with_label=True),

axisline_opts=opts.AxisLineOpts(

is_on_zero=False, linestyle_opts=opts.LineStyleOpts(color="#d14a61")

),

axispointer_opts=opts.AxisPointerOpts(

is_show=True, label=opts.LabelOpts(formatter=JsCode(js_formatter))

),

),

yaxis_opts=opts.AxisOpts(

type_="value",

splitline_opts=opts.SplitLineOpts(

is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1)

),

),

)

)

line.render_notebook()

import   pyecharts.options   as   opts

from   pyecharts.charts   import   Line

x_data = ["00:00","01:15","02:30","03:45","05:00","06:15","07:30","08:45","10:00","11:15","12:30","13:45","15:00","16:15","17:30","18:45","20:00","21:15","22:30","23:45",]

y_data = [300,280,250,260,270,300,550,500,400,390,380,390,400,500,600,750,800,700,600,400,]

line=(

Line()

.add_xaxis(xaxis_data=x_data)

.add_yaxis(

series_name="用电量",

y_axis=y_data,

is_smooth=True,

label_opts=opts.LabelOpts(is_show=False),

linestyle_opts=opts.LineStyleOpts(width=2),

)

.set_global_opts(

title_opts=opts.TitleOpts(title="一天用电量分布", subtitle="纯属虚构"),

tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"),

xaxis_opts=opts.AxisOpts(boundary_gap=False),

yaxis_opts=opts.AxisOpts(

axislabel_opts=opts.LabelOpts(formatter="{value} W"),

splitline_opts=opts.SplitLineOpts(is_show=True),

),

visualmap_opts=opts.VisualMapOpts(

is_piecewise=True,

dimension=0,

pieces=[

{"lte":6,"color":"green"},

{"gt":6,"lte":8,"color":"red"},

{"gt":8,"lte":14,"color":"yellow"},

{"gt":14,"lte":17,"color":"red"},

{"gt":17,"color":"green"},

],

pos_right=0,

pos_bottom=100

),

)

.set_series_opts(

markarea_opts=opts.MarkAreaOpts(

data=[

opts.MarkAreaItem(name="早高峰", x=("07:30","10:00")),

opts.MarkAreaItem(name="晚高峰", x=("17:30","21:15")),

]

)

)

)

line.render_notebook()

这里给大家介绍几个关键参数:

①visualmap_opts:视觉映射配置项,可以将折线分段并设置标签(is_piecewise),将不同段设置颜色(pieces);

②markarea_opts:标记区域配置项,data参数可以设置标记区域名称和位置。

[img]

Echarts条形堆叠图如何做到如下效果?

app.title = '堆叠条形图';

option = {

tooltip : {

trigger: 'axis',

axisPointer : { // 坐标轴指示器,坐标轴触发有效

type : 'shadow' // 默认为直线,可做腔选为:'line' | 'shadow'

}

},

legend: {

data: ['直接访问', '邮件营销','直接访问','邮件营销','直接访问']

},

grid: {

left: '3%',

right: '4%',

bottom: '3%',

containLabel: true

},

xAxis: {

type: 'value'

},

yAxis: {

type: 'category',

data: ['周一','周二','周三','周四','周五','周六','周日']

},

series: [

{

name: '直接庆码访问',

type: 'bar',

stack: '总量',

label: {

normal: {

show: false,

position: 'insideRight'

}

},

data: [320, 302, 301, 334, 390, 330, 320]

},

{

name: '邮件誉胡哪营销',

type: 'bar',

stack: '总量',

label: {

normal: {

show: false,

position: 'insideRight'

}

},

data: [120, 132, 101, 134, 90, 230, 210]

},

{

name: '直接访问',

type: 'bar',

stack: '总量',

label: {

normal: {

show: false,

position: 'insideRight'

}

},

data: [220, 182, 191, 234, 290, 330, 310]

},

{

name: '邮件营销',

type: 'bar',

stack: '总量',

label: {

normal: {

show: false,

position: 'insideRight'

}

},

data: [150, 212, 201, 154, 190, 330, 410]

},

{

name: '直接访问',

type: 'bar',

stack: '总量',

label: {

normal: {

show: false,

position: 'insideRight'

}

},

data: [820, 832, 901, 934, 1290, 1330, 1320]

},

{

name: '邮件营销',

type: 'bar',

stack: '总量',

label: {

normal: {

show: false,

position: 'insideRight'

}

},

data: [520, 532, 701, 334, 290, 430, 410]

}

]

};

Echarts-多个数据渲染

1、循环遍历数据ID

2、在组件引入 import echarts from 'echarts'

3、 在data里定义roseChart: "roseChart",

4、在methods:{}获取ID并获取接口数据及调用

//曲线分析图

    drawRose () {

      var roseCharts = document.getElementsByClassName("roseChart"); // 对应地使用ByClassName

      for (var i = 0; i  roseCharts.length; i++) { // 通过for循环,在相同class的dom内绘制元素

        var myChart = echarts.init(roseCharts[i]);

        myChart.setOption({

          title: {

            text: this.list[i].name

          },

          legend: {

            data: this.list[i].legend

          },

          tooltip: {

            show: true,

            transitionDuration: 0,//防止tooltip的抖动

            trigger: 'axis',

            axisPointer: {

              type: "cross",

              axis: "x"

            },

            padding: [10, 10],

            extraCssText: 'box-shadow: 1px 0 2px 0 rgba(163,163,163,0.5)'

          },

          xAxis: [{

            data: this.list[i].times,

            axisLabel: {

              interval: 0,

              rotate: 40

            },

   历野       }],

          yAxis: {},

          series: [{

            name: this.list[i].legend[0],

            type: 'line',

            data: this.list[i].tdatas,

            smooth: true,

            showAllSymbol: true,

            itemStyle: {

              normal: {

                color: 'yellow',

                lineStyle: {

                  color: "yellow",

                  width: 1

                },

                areaStyle: {

             肢握喊     color: {

                    type: 'linear',

                    x: 0,

                    y: 1,

                    x2: 0,

                    y2: 0,

                    colorStops: [{

                      offset: 0,

                      color: '#fff' // 0% 处的颜色

                    }, {

                      offset: 1,

                      color: 'yellow' // 100% 处的颜色

                    }]

                  }

                }

              }

            }

          },

          {

            name: this.list[i].legend[1],

            type: 'line',

            data: this.list[i].ydatas,

            showAllSymbol: true,

            smooth: true,

            itemStyle: {

              normal: {

                color: '#3A84FF',

                lineStyle: {

                  color: "#3A84FF",

                  width: 1

                },

                areaStyle: {

                  color: {

                    type: 'linear',

                    x: 0,

                    y: 1,

                    x2: 0,

                    y2: 0,

                    colorStops: [{

                      offset: 0,

                      color: 'rgba(0, 0, 0, 0)' // 0% 处的颜色

                    }, {

                      offset: 1,

                      color: '#1fb5fc' // 100% 处的颜色

                    }]

                  }

                }

              }

            }

          },]

        })

      }

    }

5、获取接口并将之赋值到data里面定义的数组

6、watch监听

watch: {

    list (val) {

    皮盯  this.drawRose()

    },

  }

7、后台数据格式

echarts图表浮窗设置

我们都知道图表一旦应用一般都是会设置浮窗的展示,用于起到提示说明的作用

那么浮窗中的内容是怎么设置的呢?

在echarts文档中我们会发现浮窗对应的变量名是formatter,然而文档中这键派个变量名出现的频率非常搏亮脊高,对于不熟悉文档的人来说就很容易混淆,这时我们就要明白一件事,浮窗是一种提示工具,而提示工具对应的变量是tooltip,那么formatter就一定是tooltip中的,那么 tooltip.formatter就是我们所需要的那一个 ,这里要注意 tooltip. axisPointer. label.   formatter  是有关文本设置的,与浮窗无关。

tooltip.formatter 支持字符串模板和回调函数两种形式

①字符串模板(见文档)

②回调函数(着重讲解基渗)

其中params是默认使用的参数,打印这个参数的话,结果是一个大对象,而这些参数中就包含着浮窗显示的文字数据等内容,而这些参数是可以通过series[i].data数组的对象中进行添加的,比如想在浮窗中显示namelabel,那么就可以通过在data数组的对象中push进namelabel这个数据,之后就可以在params打印结果的data中取到这个键值对,也就可以直接拿来用了

关于echartsaxispointer和的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

标签列表