机器学习pdf(机器学习 周志华)

本篇文章给大家谈谈机器学习pdf,以及机器学习 周志华对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

《Java机器学习》pdf下载在线阅读全文,求百度网盘云资源

《Java机器学习》百度网盘pdf最新全集下载:

链接: 提取码: 7vbh

简介:本书涵盖了机器学习中的经典技术,如分类、聚类、降维、离群值检测、半监督学习和主动学习。同时介绍了近期高深的主题,包括流数据学习、深度学习以及大数据学习的挑战。每一章指定一个主题,包括通过案例研究,介绍前沿的基于Java的工具和软件,以及完整的知识发现周期:数据采集、实验设计、建模、结果及评估。每一章都是独立的,提供了很大的使用灵活性。附带的网站提供了源码和数据。对于学生和数据分析从业员来说,这确实很难得,大家可以直接用刚学到的方法进行实验,或者通过将这些方法应用到真实环境中,加深对它们的理解。

《Java机器学习》百度网盘pdf最新全集下载:

链接:

?pwd=7vbh 提取码: 7vbh

简介:本书涵盖了机器学习中的经典技术,如分类、聚类、降维、离群值检测、举则弯半监督学习和主动学习。同时介绍了近期高深的主题,包括流数据学习、深度学习以及大数据学习的挑战。每一章指定一个主题,包括通过案例研究,介绍前盯迅沿的基于Java的工具和软件,以及完整的知识发现周期:数据采集、实验设计、建正闷模、结果及评估。每一章都是独立的,提供了很大的使用灵活性。附带的网站提供了源码和数据。对于学生和数据分析从业员来说,这确实很难得,大家可以直接用刚学到的方法进行实验,或者通过将这些方法应用到真实环境中,加深对它们的理解。

《机器学习》pdf下载在线阅读,求百度网盘云资源

《机器学习》(周志华)电子书网盘下载免费在线阅读

链接:

密码:z3un  

书名:机器学习

作者:周志华

豆瓣评分:8.7

出版社:清华大学出版社

出版年份:2016-1-1

页数:425

内容简介:

机器岩此学习是计算机科学与人工智能的重要分支领域. 本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面。 为了使尽可能多的读者通过本书对机器学习有所了解, 作者试图尽可能少地使用数学知识. 然而, 少量的概率、统计、代数、优化、逻辑知识似乎不可避免. 因此, 本书更适合大学三年级以上的理工科本科生和研究生, 以及具有类似背景的对机器学 习感兴趣的人士. 为方便读者, 本书附录给出了一些相关数学基础知识简介.

全书共16 章,大致分为3 个部分:第1 部分(第1~3 章)介绍机器学习的基础知识;第2 部分(第4~10 章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3 部分(第11~16 章)为进阶知识,内容涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等.前3章之外的后续各章均相对袜枣穗独立, 读者可根据自己的兴趣和时间情况选择使用. 根据课时情况, 一个学期的本科生课程可考虑告卜讲授前9章或前10章; 研究生课程则不妨使用全书.

书中除第1章外, 每章都给出了十道习题. 有的习题是帮助读者巩固本章学习, 有的是为了引导读者扩展相关知识. 一学期的一般课程可使用这些习题, 再辅以两到三个针对具体数据集的大作业. 带星号的习题则有相当难度, 有些并无现成答案, 谨供富有进取心的读者启发思考.

本书可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考。

作者简介:

周志华,南京大学教授,计算机科学与技术系副主任,软件新技术国家重点实验室常务副主任,机器学习与数据挖掘研究所(LAMDA)所长,校、系学术委员会委员;ACM杰出科学家,IEEE Fellow,IAPR Fellow,中国计算机学会会士;长江学者特聘教授,国家杰出青年基金获得者。2007年创建南京大学机器学习与数据挖掘研究所(LAMDA),2010年11月任软件新技术国家重点实验室常务副主任,2013年5月任计算机系副主任。

[img]

《机器学习及其应用2019》pdf下载在线阅读全文,求百度网盘云资源

《机器学习及其应用2019》百度网盘pdf最新全集下载:

链接:

?pwd=v7g2 提取码:v7g2

简介:《机器学习及其应用2019》是塌历对第十五届和第十六届中国“孝衫枣机器学习及其应用”研讨会的一个总结,邀请了与会的11位专家就其研究领域撰文,以综述的形式探讨了机器学习不同分支及相关领域的研究成果。内容涉及深度学习、主动学习、子空间学习、随机优化、因果图模型、聚类、分类等,介绍了新型深度学习范式,以及机器学习在机器翻译、大数据巧拆分析等方面的应用。

《机器学习及其应用2019》可供计算机、自动化及相关专业的研究人员、教师、研究生和工程技术人员阅读参考。  

《机器学习实战》pdf下载在线阅读,求百度网盘云资源

《机器学习实战》(Peter Harrington)电子书网盘下载免费在线阅读

资源链接:

链接:

提蠢液取码:8sol

书名:机器学习实战

作者:Peter Harrington

译者:李锐

豆瓣评分:8.1

出版社:人民邮电出版社

出版年份:2013-6

页数:332

内容简介:

机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中萃取有价值的信息或模式,成为各行业求生存、谋发展的决定性手段,这使得这一过去为分析师和数学家所专属的研究领域越来越为人们所瞩目。

本书第一部分主要介绍机器学习基础,以及如何利用算法进行分类,并逐步介绍了隐洞多种经典的监督学习算法,如k近邻算法、朴素贝叶斯算法、Logistic回归算法、支持向量机、AdaBoost集成方法、基于树的回归算法和分类回归树(CART)算法等。第三部分则重点介绍无监督学习及其一些主要算法:k均值聚类算法、Apriori算法、FP-Growth算法。第四部分介绍了机器学习算法的一些附属工具。

全书通过精心编排的实例,切入日常工作任务,摒弃学术化语言,利用高效的可复用Python代码来阐释如何处理统计数据,进行数据分析及可视化。通过各种实例,读者可从中学会机器学习的核心算法,并能将其运用于一些策略性任务中,如分类、预测、推荐。另外,还可用它们来实现一些更高级的功能,如汇总和简化等。

作者简介:

Peter Harrington

拥有电气工程学士和硕士学位,他曾经在美国加州和中国的英特尔公司工作7年。Peter拥有5项美国专利,在三种学术期刊上发表过文章。他现在是Zillabyte公司的首灶档枯席科学家,在加入该公司之前,他曾担任2年的机器学习软件顾问。Peter在业余时间还参加编程竞赛和建造3D打印机。

关于机器学习pdf和机器学习 周志华的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

标签列表