ods数据仓库(数据仓库 olap)

本篇文章给大家谈谈ods数据仓库,以及数据仓库 olap对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

质量中ods是什么意思

1、质量中ods是一种常被用作数据仓库临时区域的数据库。

2、

3、操作型数据存储可用于整合来自多种源的不同数据,这样在进行业务操作时,可以执行业务分析和报告。当前操作中使用的大部分数据在被转入数据仓库进行长期存储或归档之前,就存储在操作型数据存储中。操作型数据存储是专为相对简单的少量数据查询设闭枯弯计的,而不是对数据仓库中的大量复杂数据进行查询。操作型数据存储类似于人的短期记忆,因为它只能存储最近的信息,相反,数据仓库更像是长期记忆,它存储相对永久的信息。

4、

5、数据仓库之父W.H.Inmon于1995年提出操作型数据存储的概念。ODS为企业提供即时的,操作型的,集成的数据集合,具有面向主题性,集成性,动态性,即时性,明细性等特点。由该定义可以看出,Inmon提出ODS概念的本意,是要弥补数轿闷据仓库在支持即时的、明细的、轻量集成的操作数据时的不足。ODS作为败余数据库到数据仓库的一种过渡形式,在企业数据架构中形成了DB、ODS、DW的三层体系结构。

更多关于质量中ods是什么意思,进入:查看更多内容

[img]

数据仓库与ODS的区别,数据仓库和ODS并存方

DW

数据仓库存储是一个面向主题的举运,反映历史变化数据,用于支撑管理决策。

ODS

操作型数据存储,存储的是当前的数据情况,给使用者提供当前的状态,提供即时性的、操作性的、集成的全体信息的需求。

ODS作为数据库到数据仓库的一种过渡形式,与数据仓库在物理结构上不同,能提供高性能的响应时间,ODS设计采用混合设计方式。

ODS中的数据是"实时值",而数据仓库的数据却是"历史值",一般ODS中储存的数据不超过一个月,而数据仓库为10年或更多.

数据仓库和ODS并存方案

经过调研,发现大体上有三种解法:

1、业务数据 - ODS - 数据仓库

优点:这样做的好处是ODS的数据与数据仓库的数据高度统一;开发成本低,至少开发一次并应用到ODS即可;可见ODS是发挥承上启下的作用,调研阿里巴巴的数据部门也是这么实现的。睁答举

缺点:数据仓库需要的所有数据悉碧都需要走ODS,那么ODS的灵活性必然受到影响,甚至不利于扩展、系统的灵活性差

2、OB - ODS

优点:结构简单。一般的初创数据分析团队都是类似的结构,比如我们部门就应该归结到这一范畴

缺点:这样所有数据都归结到ODS,长期数据决策分析能力差,软硬件成本高,模块划分不清晰,通用性差

3、数据仓库和ODS并行

可见这个模型兼顾了上面提高的各自优点,且便于扩展,ODS和数据仓库各做各的,形成优势互补!可以解决现在互联网公司遇到的快速变化、快速开发等特点!特别是对于那些刚刚创建数据团队,数据开发人员紧缺的公司,可以尝试使用这个数据架构解决问题!

什么是ODS?

ODS是一个面向主题的、集成的、可变的、当前的细节数据集合,用于支持企业对于即时性的、操作性的、集成的全体信息的需求。常常被作为数据仓库的过渡,也是数据仓库项目的可选项之一。 根据Bill.Inmon的定义, “数据仓库是面向主题的数据仓库是面向主题的数据仓库是面向主题的数据仓库是面向主题的、集成的集成的集成的集成的、稳定的稳定的稳定的稳定的、、随时间变化的随时间变化的随时间变化的随时间变化的,主要用于决策支持的数据库系统” 在Kimball的的的的数据仓库生命周期工具集数据仓库生命周期工具集数据仓库生命周期工具集数据仓库生命周期工具集The Data WareHouse Liftcycle Toolkit,他是这样定义的: 1. 是操作型系李伏统中的集成,用于当前,历史以及其它细节查询(业务系统的一部分) 2. 为决策支持提供当前细节数据(数据仓库的一部分) 因此操作数据存储(ODS) 是用于支持企业日常的全局应用的数据集合,ODS的数据具有面向主题、集成的、可变的和数据是当前的或是接近当前的4个基本特征。 同样也可以看出ODS是介于DB和DW 之间的一种数据存储技术,和原来面向应用的分散的DB相比,ODS中的数据组织方式和数据仓库(DW)一样也是面向主题的和集成的,所以对进入ODS的数 据也象进入数据仓库的数据一样进行集成处理。 另外ODS只是存放当前或接近当前的数据,如果需要的话还可以对ODS中的数据进行增、删和更新等操 作,虽然DW中的数据也是面向主题和集成的,但这些数据一般不进行修改, 所以ODS和DW的区别主要体现数据的可变性、当前性、稳定性、汇总度上。 由于ODS仍然存储在普通的关系数据库中,出于性能、存储和备份恢复等数据库的角度以及对源数据库的性能影响角度,个人不建议ODS保存相当长周期的数据,同样ODS中的数据也尽量不做转换, 而是原封不动地与业务数据库保持一致。 即ODS只是业务数据库的一个备份或者映像,目的是为了使数据仓库的处理和决策支持要求与OLTP系统相隔离,减少决策支持要求对OLTP系统的影响。 一般在带有ODS的系统体系结构中的ODS都具备如下几都具备如下几个作用: 1) 在业务系统和数据仓库之间形成一个隔离层。 一般的数据仓库应用系统都具有非常复杂的数据来源,这些数据存放在不同的地理位置、不同的数据库、不同的应用之中,从这些业务系统对数据进行抽取并不是一件 容易的事。因此,ODS用于存放从业务系统直接抽取出来的数据,这些数据从数据结构、数据之间的逻辑关系上都与业务系统基本保持一致,因此在抽取过程中极 大降低了数据转化的复杂性,而主要关注数据抽取的接口、数据量大小、抽取方式等方面的问题。 2) 转移一部分业务系统细节查询的功能 在数据仓库建立之前,大量的报表、分析是由业务系统直接支持的,在一些比较复杂的报表 生成过程中,对业务系统的运行产生相当大的压力。ODS的数据从粒度、 组织方式等各个方面都保持了与业务系统的一致,那么原来由业务系统产生的报表、细节数据的查询自然能够从ODS中进行,从而降低业务系统的查询压力。 3) 完成数据仓库中不能没码完成的一些功能。 一般来说,带有ODS的数据仓库体系结构中,DW层所存储的枯扰哪数据都是进行汇总过的数据和运营指标,并不存储每笔交易产生的细节数据,但是在某些特殊的应用中,可能需要 对交易细节数据进行查询,这时就需要把细节数据查询的功能转移到ODS来完成,而且ODS的数据模型按照面向主题的方式进行存储,可以方便地支持多维分析 等查询功能。即数据仓库从宏观角度满足企业的决策支持要求,而ODS层则从微观角度反映细节交易数据或者低粒度的数据查询要求。 在一个没有ODS层的数据仓库应用系统体系结构中,数据仓库中存储的数据粒度是根据需要而确定的,但一般来说,最为细节的业务数据也是需要保留的,实际上 也就相当于ODS,但与ODS所不同的是,这时的细节数据不是“当前、不断变化的”数据,而是“历史的,不再变化的”数据。这样的数据仓库的存储压力和性能压力都是比较大的,因此对数据仓库的物理设计和逻辑设计提出了更高的要求。

临时存储采集到的原始数据是哪一个数仓分层

临时存储采集到的原始数据通常属于数据仓旦前库中的操作性数据层。根据查询相关公开信息显示,ODS是数据仓库中的一层,通常用于存储从各个数据源中采集到的稿碧原始数据或者键迟举数据变更记录。ODS层是数据仓库中与操作型系统直接交互的一层,用于支持数据仓库的数据采集和数据集成过程。

数据库银行ods层的数据从哪来

ODS是在数据仓库中存储业务系统源数据。前渣

ods层数据导入的方法:

1、创建临时表渣铅并加载数据。

2、创慧梁悄建ods库表。

3、将数据导入orc格式表中,就完成了。

数据仓库与ODS的区别,数据仓库和ODS并存方案

一直想整理一下这块内容,既然是漫谈,就想起什么说什么吧。我一直是在互联网行业,就以互联网行业来说。先大概列一下互联网行业数据仓库、数据平台的用途:

整合公司所有业务数据,建立统一的数据中心;

提供各种报表,有给高层的,有给各个业务的;

为网站运营提供运营上的数据支持,就是通过数据,让运营及时了解网站和产品的运营效果;

为各个业务提供线上或线下的数据支持,成为公司统一的数据交换与提供平台;

分析用户行为数据,通过数据挖掘来降低投入成本,提高投入效果;比如广告定向精准投放、用户个性化推荐等;

开发数据产品,直接或间接为公司盈利;

建设开放数据平台,开放公司数据;

。。。。。。

上面列出的内容看上去和传统行业数据仓库用途差不多,并且都要求数据仓库/数据平台有很好的稳定性、可靠性;但在互联网行业,除了数据量大之外,越来越多的业务要求时效性,甚至很多是要求实时的 ,另外,互联网行业的业务变化非常快,不可能像传统行业一样,可以使用自顶向下的方法建立数据仓库,一劳永逸,它要求新的业务很快能融入数据仓库中来,老的下线的业务,能很方便的从现有的数据仓库中下线;

其实,互联网行业的数据渣没仓库就是所谓的敏捷数据仓库,不但要求能快速的响应数据,也要求能快速的响应业务;

建设敏捷数据仓库,除了对架构技术上的要求之外,还有一个很重要的方面,就是数据建模,如果一上来就想着建立一套能兼容所有数据和业务的数据模型,那就又回到传统数据仓库的建设上了,很难满足对业务变化的快速响应。应对这种情况,一般是先将核如枣纳心的持久化的业务进行深度建模(比如:基于网站日志建立的网站统计分析模型和用户浏览轨迹模型;基于公司核心用户数据建立的用户模型),其它的业务一般都采用维度+宽表的方式来建立数据模型。这块是后话。

整体架构下面的图是我们目前使用的数据平台架构图,其实大多公司应该都差不多:

请点击输入图片描述

逻辑上,一般都有数据采集层、数据存储与分析层、数据共享层、数据应用层。可能叫法有所不同,本质上的角色都大同小异。

我们从下往上看:

数据采集数据采集层的任务就是把数据从各种数据源中采集和存储到数据存储上,期间有可能会做一些简单的清洗。

数据源的种类比较多:

网站日志:

作为互联网行业,网站日志占的份额最大,网站日志存储在多台网站日志服务器上,

一般是在每台网站日志服务器上部署flume agent,实时的收集网站日志并存储到HDFS上;

业务数据库:

业务数据库的种类也是多种多样,有Mysql、Oracle、SqlServer等,这时候,我们迫切的需要一种能从各种数据库中将数据同步到HDFS上的工具,Sqoop是一种,但是Sqoop太过繁重,而且不管数据量大小,都需要启动MapReduce来执行,而且需要Hadoop集群的每台机器都能访问业务数据库;应对此场景,淘宝开源的DataX,是一个很好的解决方案(可参考文章 《异构数据源海量数据交换工具-Taobao DataX 下载和使用》),有资源的话,可以基于DataX之上做二次开发,就能非常好的解决,我们目前使用的DataHub也是。

当然,Flume通过配置与开发,也可以实时的从数据库中同步数据到HDFS。

来自于Ftp/Http的数据源:

有可能一些合作伙伴提供的数据,需要通过Ftp/Http等定时获取,DataX也可以满足该需求;

其他数据源:

比如一些手工录入的数据,只需要提供一个接口或小程序,即可完成;

数据存储与分析毋庸置疑,HDFS是大数据环境下数据仓库/数据平台最完美的数据存储解决方案。

离线数据分析与计算,也就是对实时性要求不高的部分,在我看来,Hive还是首当其冲的选择,丰富的数据类型、内置函数;压缩比非常高的ORC文件存储格式;非常方便的SQL支持,使得Hive在基于结构化数据上的统计分析远远比MapReduce要高效的多,一句SQL可岩渗以完成的需求,开发MR可能需要上百行代码;

当然,使用Hadoop框架自然而然也提供了MapReduce接口,如果真的很乐意开发Java,或者对SQL不熟,那么也可以使用MapReduce来做分析与计算;Spark是这两年非常火的,经过实践,它的性能的确比MapReduce要好很多,而且和Hive、Yarn结合的越来越好,因此,必须支持使用Spark和SparkSQL来做分析和计算。因为已经有Hadoop Yarn,使用Spark其实是非常容易的,不用单独部署Spark集群,关于Spark On Yarn的相关文章,可参考:《Spark On Yarn系列文章》

实时计算部分,后面单独说。

数据共享这里的数据共享,其实指的是前面数据分析与计算后的结果存放的地方,其实就是关系型数据库和NOSQL数据库;

前面使用Hive、MR、Spark、SparkSQL分析和计算的结果,还是在HDFS上,但大多业务和应用不可能直接从HDFS上获取数据,那么就需要一个数据共享的地方,使得各业务和产品能方便的获取数据; 和数据采集层到HDFS刚好相反,这里需要一个从HDFS将数据同步至其他目标数据源的工具,同样,DataX也可以满足。

另外,一些实时计算的结果数据可能由实时计算模块直接写入数据共享。

数据应用

业务产品

业务产品所使用的数据,已经存在于数据共享层,他们直接从数据共享层访问即可;

报表

同业务产品,报表所使用的数据,一般也是已经统计汇总好的,存放于数据共享层;

即席查询

即席查询的用户有很多,有可能是数据开发人员、网站和产品运营人员、数据分析人员、甚至是部门老大,他们都有即席查询数据的需求;

这种即席查询通常是现有的报表和数据共享层的数据并不能满足他们的需求,需要从数据存储层直接查询。

即席查询一般是通过SQL完成,最大的难度在于响应速度上,使用Hive有点慢,目前我的解决方案是SparkSQL,它的响应速度较Hive快很多,而且能很好的与Hive兼容。

当然,你也可以使用Impala,如果不在乎平台中再多一个框架的话。

OLAP

目前,很多的OLAP工具不能很好的支持从HDFS上直接获取数据,都是通过将需要的数据同步到关系型数据库中做OLAP,但如果数据量巨大的话,关系型数据库显然不行;

这时候,需要做相应的开发,从HDFS或者HBase中获取数据,完成OLAP的功能;

比如:根据用户在界面上选择的不定的维度和指标,通过开发接口,从HBase中获取数据来展示。

其它数据接口

这种接口有通用的,有定制的。比如:一个从Redis中获取用户属性的接口是通用的,所有的业务都可以调用这个接口来获取用户属性。

实时计算现在业务对数据仓库实时性的需求越来越多,比如:实时的了解网站的整体流量;实时的获取一个广告的曝光和点击;在海量数据下,依靠传统数据库和传统实现方法基本完成不了,需要的是一种分布式的、高吞吐量的、延时低的、高可靠的实时计算框架;Storm在这块是比较成熟了,但我选择Spark Streaming,原因很简单,不想多引入一个框架到平台中,另外,Spark Streaming比Storm延时性高那么一点点,那对于我们的需要可以忽略。

我们目前使用Spark Streaming实现了实时的网站流量统计、实时的广告效果统计两块功能。

做法也很简单,由Flume在前端日志服务器上收集网站日志和广告日志,实时的发送给Spark Streaming,由Spark Streaming完成统计,将数据存储至Redis,业务通过访问Redis实时获取。

任务调度与监控在数据仓库/数据平台中,有各种各样非常多的程序和任务,比如:数据采集任务、数据同步任务、数据分析任务等;

这些任务除了定时调度,还存在非常复杂的任务依赖关系,比如:数据分析任务必须等相应的数据采集任务完成后才能开始;数据同步任务需要等数据分析任务完成后才能开始; 这就需要一个非常完善的任务调度与监控系统,它作为数据仓库/数据平台的中枢,负责调度和监控所有任务的分配与运行。

前面有写过文章,《大数据平台中的任务调度与监控》,这里不再累赘。

总结在我看来架构并不是技术越多越新越好,而是在可以满足需求的情况下,越简单越稳定越好。目前在我们的数据平台中,开发更多的是关注业务,而不是技术,他们把业务和需求搞清楚了,基本上只需要做简单的SQL开发,然后配置到调度系统就可以了,如果任务异常,会收到告警。这样,可以使更多的资源专注于业务之上。

请点击输入图片描述

请点击输入图片描述

关于ods数据仓库和数据仓库 olap的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

标签列表