hive和hbase的区别(hadoop,hbase,hive)
本篇文章给大家谈谈hive和hbase的区别,以及hadoop,hbase,hive对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、Hive是什么,Hive与关系型数据库的区别
- 2、Hbase和Hive在Hadoop中的功能有什么联系?他们怎么分别作业的.两个数据库不会有重复信息导致资源浪费吗?
- 3、有几点关于hadoop的hive数据仓库和hbase几点疑惑,希望有高手可以帮忙解决一下,谢谢了!!!
- 4、hive,impala,kfk,hbase,mitaka的关系是怎样的
- 5、hbase和hive的差别是什么,各自适用在什么场景中
- 6、hive与hbase的十大区别与联系
Hive是什么,Hive与关系型数据库的区别
Hive与传统的关系型数据库有很多类似的地方,例如对SQL的支持。但是其基于HDFS与裤衫哗MapReduce的事实使得塌虚它与传统的数据库在很多方面有很大的不同,在一些特性的支持下也受到底层架构的限制,但是这些限制随着版本迭代正在胡行不断被消除,使得Hive看起来越来越像传统的数据库。
Hbase和Hive在Hadoop中的功能有什么联系?他们怎么分别作业的.两个数据库不会有重复信息导致资源浪费吗?
简单来说hive用来批量处理数据,HBase用来快速索引数据。
HBase是一个分布式的基于列存储的非关系型数据库。HBase的查询效率很高,主要由于查询和展示结果。
hive是分布式的关系型数据库。主要用来并行分布式 处理 大量数据。hive中的所有查询除了"select * from table;"都是需要通过Map\晌塌Reduce的方世纯式来执行的。由于要搜谨咐走Map\Reduce,即使一个只有1行1列的表,如果不是通过select * from table;方式来查询的,可能也需要8、9秒。但hive比较擅长处理大量数据。当要处理的数据很多,并且Hadoop集群有足够的规模,这时就能体现出它的优势。
通过hive的存储接口,hive和Hbase可以整合使用。参见:
[img]有几点关于hadoop的hive数据仓库和hbase几点疑惑,希望有高手可以帮忙解决一下,谢谢了!!!
首先感觉你有点乱。。。
你先明白数据仓库悔大的作用-升肆-存储历史数据-进而对数据进行分析,只提供查询-不提供修改
1。Hive 的目标是做成数据仓库,所以它提供了SQL,提供了文件-表的映射关系,又由于Hive基于HDFS,所以不提供Update,因为HDFS本身就不支持。
2.HBase 是NoSQL数据库-所以不要跟传统混淆并谈-NoSQL 提供的是另一种思路来满足高性能的需求,而这些是传统数据库的短板,与传统数据库的理念不一样
3.load data 这个可以自己去查。Hbase要使用自己的API
4.是的。
5.这句话不对。
6.映射碧笑竖就是结构对应-如文件每一行的第一个字段-映射到Hive表的第一个字段
类似Hibernate的语法解析。
Hive本身实现了一套语法结构也就是操作符。如扫描文件等,最终记本都会转换成MapReduce来运行
hive,impala,kfk,hbase,mitaka的关系是怎样的
hbase在三者中更注重的是存储,它实现了类似mysql的double write机制,但是它是一种NoSQL的数据库,并且是可以支持列式存储的,算是比较大的一个内存Hash表。hbase也采用了类似mysql中的mvcc的思想通过时间戳来做版本控制。
hbase是在hdfs基础之上的,可以算是数据友仿老的一种组织方式,是一种基于hadoop的分布式数据库大谈系统。从数据库的角度来说,与mysql处在同一个层次,都是基于文件系统之上的管理数据的一种方法。
hbase作为面向列的数据库,支持按列读取和行读取,并解决了关系型数据库的分表的一些需求,如:关系型数据库中有些表的列重复数据太多了,需好升要重新建表来存重复列的数据,减少表的大小。
hive和impala则更偏向于查询分析,impala需要依赖hive的元数据,它们都有自己的查询分析引擎,只是impala是纯查询分析引擎。
hive 本身并不执行任务的分析过程,而是推给了mapreduce,这点与impala大不同,hive本身提供了数据的格式化输出功能,但是hive转换的mr可能不是最高效的,调优方式有限,很多复杂的算法没有办法表达,毕竟sql的语义表达能力有限。
hive与impala在查询分析这部分,hive明显的支持程度要比impala高,提供了很多内部函数,并且支持UDAF,UDF的方式
从数据库特性角度来看,hive与hbase的对比,hive不能修改数据,只能追加的方式,hbase允许增加和删除数据,hive不支持索引,impala和hive都是没有存储引擎的,hbase算是有自己的存储引擎。
在使用层面上来看,hive在使用上更像数据库,它提供非常丰富的系统函数,各种数据的操作,hbase在这方面就不太像一般的关系型数据库,它还是一个key-val的NoSQL,这方面的操作支持很有限,impala在这方面也是比较弱。
在计算模型层面上来看,hive是通过MR来计算的,这是一个偏向挪动数据到mr的计算节点来计算的模型,而impala则更多的是移动计算需求到DN上来做,数据不用动,最后变成了本地的磁盘IO。
hbase和hive的差别是什么,各自适用在什么场景中
Hive和Hbase是两种基于Hadoop的不同技术--Hive是一种类SQL的引擎,并且运行MapReduce任务,Hbase是一种在Hadoop之上的NoSQL 的Key/vale数据库腔搏。当然,这两种工具是可以同时使用的。就像用Google来搜索,用FaceBook进行社交一样,Hive可以用来进行统计查询,HBase可以用来进行实时查询,数据也可以从Hive写到Hbase,设置再从Hbase写伍凳祥回Hive
共同点:
1.hbase与hive都是架构在hadoop之上的。都是用hadoop作为底层存储
区别:
1.Hive是建立在Hadoop之上为了减少MapReduce jobs编写工作的批处理系统,HBase是为了支持弥补Hadoop对实时操作的缺陷的项目 。
2.想象你在操作RMDB数据库,如果是全表扫描,就用Hive+Hadoop,如果是索引访问,就用HBase+Hadoop 。
3.Hive query就是MapReduce jobs可以从5分钟到数小时不止,HBase是非常高效的,肯定比Hive高效的多。
4.Hive本身不存储和计算数据,它完全依赖于HDFS和MapReduce,Hive中的表纯逻辑,就只是表的定义等,即表的元数据。这样就可以将结构化的数据文件映射为一张数据库表,并提供完整的SQL查询功能,并将SQL语句最终转换为MapReduce任务进行运行。
5.hive借用hadoop的MapReduce来完成一些hive中的命令的执行
6.hbase是物理表,不是逻辑表,提供一个超大的内存hash表,搜索引擎通过它来存储索引,方便查询操作。
7.hbase是列存储。
8.hdfs作为底层存储,hdfs是存放文件的系统,而Hbase负责组粗轮织文件。
9.hive需要用到hdfs存储文件,需要用到MapReduce计算框架。
hive与hbase的十大区别与联系
1、Hive跟Hbase都是基于hadoop的hdfs文件系统,都是apache下的项目
2、Hive是基于hdfs的数据仓库,优势汪散在于做大规模数据的离线分析,不属于分布式数据李档库
3、Hbase则是分布式数据库,不是基困扰氏于分布式文件系统,这是本质区别
4、hive跟hbase的数据可以互导
关于hive和hbase的区别和hadoop,hbase,hive的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。