hadoop和hive的关系(hadoop和hive的区别)

本篇文章给大家谈谈hadoop和hive的关系,以及hadoop和hive的区别对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

Hadoop,Hive,Spark 之间是什么关系

Hadoop是一个由Apache基金会所开发的分布式系统基础架构。Hadoop也是apache开源大数据的一个生态圈总称,里面包含跟大数据开源框架的一些软件,包含hdfs,hive,zookeeper,hbase等等;Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,则MapReduce为海量的数据提哪册供了计算。

Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。 其优点是学习成本低,可以通过类SQL语李好宏句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。

Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。

尽管创建 Spark 是为了支持分布式数据集上的迭代作业,但是实际上它是对 Hadoop 的补充,可以在 Hadoop 文件系统中并行运行。通过名为 Mesos 的袜亩第三方集群框架可以支持此行为。

hadoop(hive)-spark(扩展)

hadoop和hive之间有什么关系?

hive是hadoop的延申。

hadoop是一个分布式的软件处理框架,hive是一个提供了查询功能的数据仓库,而hadoop底层的hdfs为hive提供了数据存储。

hive将用户提交的SQL解析成mapreduce任务供hadoop直接运行,结合两者的优势,进行数据决策。一个擅长大数据并行计算,一个支持SQL数据查询,方便是显而易见的。但hive只要还是读操作

有了Hive之后,人们发现SQL对比Java有巨大的优势。一个是它太容易写了。刚才词频的东西,灶举正用SQL描述就只有一两MapReduce写起来大约要几十上百行。

扩展资料:

它主要有以下几个优点 :

1、高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖 。

2、高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中 。

3、高效答数性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。

4、高容错性。Hadoop能够自动保存数隐悔据的多个副本,并且能够自动将失败的任务重新分配。

低成本。与一体机、商用数据仓库以及QlikView、Yonghong Z-Suite等数据集市相比,hadoop是开源的,项目的软件成本因此会大大降低 。

Hadoop带有用Java语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。Hadoop 上的应用程序也可以使用其他语言编写,比如 C++ 。

[img]

Hadoop、Hive、Spark三者的区别和关系

Hadoop分为两大部分:HDFS、Mapreduce。

HDFS为海量的数据提供了存储,而MapReduce则为海量的数据提供了计算。

由于编写MapReduce程序繁琐复瞎正杂,而sql语言比较简单,程序员就开发出了支持sql的hive。hive的出现方便了程序员和没有计算机背景的数据分析人员。我们只需要编写相对简单的sql命令,hive会帮我们翻译为mapreduce程序交给计算机去执行。

mapreduceh这个计算框架每次执行都是从磁盘中读取的,而spark则是直接从内存中读取的。由于MapReduce 的框架限制,一个 MapReduce 任务只能包含一次 Map 和一次 Reduce,计算完成之后,MapReduce 会将运算结果写回到磁盘中(更准确地说是分布式存储系统)供下次计算使用。如果所做的运算涉及大量循环,比如估计模型参数的梯度下降或随机梯度下降算法就需要多次循环使用训练数据磨悄悔,那么整个计算过程会不断重复地往磁盘里读写中间结果。这样的读写数据会引起大量的网络传输以及磁盘读写,极其耗时,而且它运迟们都是没什么实际价值的废操作。因为上一次循环的结果会立马被下一次使用,完全没必要将其写入磁盘。

所以spark可以理解为mapreduce的改进升级版

关于hadoop和hive的关系和hadoop和hive的区别的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

标签列表